{"title":"Cellulose-based smart materials: Novel synthesis techniques, properties, and applications in energy storage and conversion devices","authors":"Pariksha Bishnoi, Samarjeet Singh Siwal, Vinod Kumar, Vijay Kumar Thakur","doi":"10.1002/elt2.42","DOIUrl":"https://doi.org/10.1002/elt2.42","url":null,"abstract":"<p>There has been a significant scope toward the cutting-edge investigations in hierarchical carbon nanostructured electrodes originating from cellulosic materials, such as cellulose nanofibers, available from natural cellulose and bacterial cellulose. Elements of energy storage systems (ESSs) are typically established upon inorganic/metal mixtures, carbonaceous implications, and petroleum-derived hydrocarbon chemicals. However, these conventional substances may need help fulfilling the ever-increasing needs of ESSs. Nanocellulose has grown significantly as an impressive 1D element due to its natural availability, eco-friendliness, recyclability, structural identity, simple transformation, and dimensional durability. Here, in this review article, we have discussed the role and overview of cellulose-based hydrogels in ESSs. Additionally, the extraction sources and solvents used for dissolution have been discussed in detail. Finally, the properties (such as self-healing, transparency, strength and swelling behavior), and applications (such as flexible batteries, fuel cells, solar cells, flexible supercapacitors and carbon-based derived from cellulose) in energy storage devices and conclusion with existing challenges have been updated with recent findings.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.42","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Priyanka Singh, Shivang Singh, Balaji Maddiboyina, SaiKrishna Kandalam, Tomasz Walski, Raghvendra A. Bohara
{"title":"Hybrid silver nanoparticles: Modes of synthesis and various biomedical applications","authors":"Priyanka Singh, Shivang Singh, Balaji Maddiboyina, SaiKrishna Kandalam, Tomasz Walski, Raghvendra A. Bohara","doi":"10.1002/elt2.22","DOIUrl":"10.1002/elt2.22","url":null,"abstract":"<p>In the present day, there is a growing trend of employing new strategies to synthesize hybrid nanoparticles, which involve combining various functionalities into a single nanocomposite system. These modern methods differ significantly from the traditional classical approaches and have emerged at the forefront of materials science. The fabrication of hybrid nanomaterials presents an unparalleled opportunity for applications in a wide range of areas, including therapy to diagnosis. The focus of this review article is to shed light on the different modalities of hybrid nanoparticles, providing a concise description of hybrid silver nanoparticles, exploring various modes of synthesis and classification of hybrid silver nanoparticles, and highlighting their advantages. Additionally, we discussed core-shell silver nanoparticles and various types of core and shell combinations based on the material category, such as dielectric, metal, or semiconductor. The two primary classes of hybrid silver nanoparticles were also reviewed. Furthermore, various hybrid nanoparticles and their methods of synthesis were discussed but we emphasize silica as a suitable candidate for hybridization alongside metal nanoparticles. This choice is due to its hydrophilic surface qualities and high surface charge, which provide the desired repulsive forces to minimize aggregation between the metal nanoparticles in the liquid solution. Silica shell encapsulation also provides chemical inertness, robustness and the adaptability to the desired hybrid nanoparticle. Therefore, among all the materials used to coat metal nanoparticles; silica is highly approved.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.22","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141102490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoshuang Ma, Jinkun Wang, Zehua Wang, Li Wang, Hong Xu, Xiangming He
{"title":"Engineering strategies for high-voltage LiCoO2 based high-energy Li-ion batteries","authors":"Xiaoshuang Ma, Jinkun Wang, Zehua Wang, Li Wang, Hong Xu, Xiangming He","doi":"10.1002/elt2.33","DOIUrl":"10.1002/elt2.33","url":null,"abstract":"<p>To drive electronic devices for a long range, the energy density of Li-ion batteries must be further enhanced, and high-energy cathode materials are required. Among the cathode materials, LiCoO<sub>2</sub> (LCO) is one of the most promising candidates when charged to higher voltages over 4.3 V. However, high-voltage LCO materials are confronted with severe surface and bulk issues inducing poor cyclic stability. To completely unleash the potential of LCO cathodes, a more comprehensive theoretical understanding of the underlying issues is necessary, along with active exploration of previous modifications. This paper mainly presents the degradation mechanisms of LCO under high voltage, the formation and evolution mechanisms of the cathode electrolyte interface, and the surface engineering strategies employed to enhance the cell performance. By organizing and summarizing these modifications, this work aims to establish associations among common research issues and to suggest future research priorities, thus facilitating the rapid development of high-voltage LCO.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.33","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140987119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Developments of photo-/electro-catalysis based on covalent organic frameworks: A review","authors":"Guiping Yang, Qing Xu, Gaofeng Zeng","doi":"10.1002/elt2.39","DOIUrl":"10.1002/elt2.39","url":null,"abstract":"<p>Photo-/electro-catalysis has the characteristics of low cost, high performance, and zero pollution, which meet the policies on environment and energy. Covalent organic frameworks (COFs), a type of crystalline organic skeleton polymers, have been widely applied and investigated in the area of photo-/electro-catalysis owing to their advantages of large specific surface area, regular pore size, excellent stability, flexible structural design, and massive active sites. This article reviews the structural characteristics of COFs and the strategies for strengthening the photo-/electro-catalytic activity of COF materials. Subsequently, deep insights were put into the photo-/electro-catalysis application of COF materials. In the end, the development prospects and challenges faced by COF materials in photo-/electro-catalysis are discussed.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.39","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140987746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrocatalysis-driven sustainable plastic waste upcycling","authors":"Gaihong Wang, Zhijie Chen, Wei Wei, Bing-Jie Ni","doi":"10.1002/elt2.34","DOIUrl":"https://doi.org/10.1002/elt2.34","url":null,"abstract":"<p>With large quantities and natural resistance to degradation, plastic waste raises growing environmental concerns in the world. To achieve the upcycling of plastic waste into value-added products, the electrocatalytic-driven process is emerging as an attractive option due to the mild operation conditions, high reaction selectivity, and low carbon emission. Herein, this review provides a comprehensive overview of the upgrading of plastic waste via electrocatalysis. Specifically, key electrooxidation processes including the target products, intermediates and reaction pathways in the plastic electro-reforming process are discussed. Subsequently, advanced electrochemical systems, including the integration of anodic plastic monomer oxidation and value-added cathodic reduction and photo-involved electrolysis processes, are summarized. The design strategies of electrocatalysts with enhanced activity are highlighted and catalytic mechanisms in the electrocatalytic oxidation of plastic waste are elucidated. To promote the electrochemistry-driven sustainable upcycling of plastic waste, challenges and opportunities are further put forward.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.34","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingying Luo, Gurpreet Singh Selopal, Xin Tong, Zhiming Wang
{"title":"Colloidal quantum dots and two-dimensional material heterostructures for photodetector applications","authors":"Jingying Luo, Gurpreet Singh Selopal, Xin Tong, Zhiming Wang","doi":"10.1002/elt2.30","DOIUrl":"10.1002/elt2.30","url":null,"abstract":"<p>Photodetectors (PDs) are optoelectronic devices that convert optical signals into electrical responses. Recently, there has been a tremendous increase in research interest in PDs based on colloidal quantum dots (QDs) and two-dimensional (2D) material heterostructures owing to the strong light-absorption capacity and the well-adjustable band gap of QDs and the superior charge carriers transfer ability of 2D materials. In particular, the heterojunction formed between QDs and 2D materials can effectively enhance the separation and transport of photogenerated charge carriers, which is expected to establish PDs with ultrahigh photoconductive gain, high responsivity, and detectivity. This review aimed to summarize the state-of-the-art advances in the research of QDs/2D material nanohybrid PDs, including the device parameters, architectures, working mechanisms, and fabrication technologies. The progress of hybrid PDs based on the heterojunction of QDs with different 2D materials, along with their innovative applications, are comprehensively described. In the end, the challenges and feasible strategies in future research and development are briefly proposed.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.30","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140736417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lan Li, Ran Bi, Zuoyuan Dong, Changqing Ye, Jing Xie, Chaolun Wang, Xiaomei Li, Kin-Leong Pey, Ming Li, Xing Wu
{"title":"Atomic-scale strain analysis for advanced Si/SiGe heterostructure by using transmission electron microscopy","authors":"Lan Li, Ran Bi, Zuoyuan Dong, Changqing Ye, Jing Xie, Chaolun Wang, Xiaomei Li, Kin-Leong Pey, Ming Li, Xing Wu","doi":"10.1002/elt2.32","DOIUrl":"10.1002/elt2.32","url":null,"abstract":"<p>Three-dimensional stacked transistors based on Si/SiGe heterojunction are a potential candidate for future low-power and high-performance computing in integrated circuits. Observing and accurately measuring strain in Si/SiGe heterojunctions is critical to increasing carrier mobility and improving device performance. Transmission electron microscopy (TEM) with high spatial resolution and analytical capabilities provides technical support for atomic-scale strain measurement and promotes significant progress in strain mapping technology. This paper reviews atomic-scale strain analysis for advanced Si/SiGe heterostructure based on TEM techniques. Convergent-beam electron diffraction, nano-beam electron diffraction, dark-field electron holography, and high-resolution TEM with geometrical phase analysis, are comprehensively discussed in terms of spatial resolution, strain precision, field of view, reference position, and data processing. Also, the advantages and critical issues of these strain analysis methods based on the TEM technique are summarized, and the future direction of TEM techniques in the related areas is prospected.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.32","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140743829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luyi Sun, Jun Zeng, Xuanhong Wan, Chenxi Peng, Jiarui Wang, Chongjia Lin, Min Zhu, Jun Liu
{"title":"Recent progress of interface modification of layered oxide cathode material for sodium-ion batteries","authors":"Luyi Sun, Jun Zeng, Xuanhong Wan, Chenxi Peng, Jiarui Wang, Chongjia Lin, Min Zhu, Jun Liu","doi":"10.1002/elt2.31","DOIUrl":"10.1002/elt2.31","url":null,"abstract":"<p>With the advantages of similar theoretical basis to lithium batteries, relatively low budget and the abundance of sodium resources, sodium ion batteries (SIBs) are recognized as the most competitive alternative to lithium-ion batteries. Among various types of cathodes for SIBs, advantages of high theoretical capacity, nontoxic and facile synthesis are introduced for layered transition metal oxide cathodes and therefore they have attracted huge attention. Nevertheless, layered oxide cathodes suffer from various degradation issues. Among these issues, interface instability including surface residues, phase transitions, loss of active transition metal and oxygen loss takes up the major part of the degradation of layered oxides. These degradation mechanisms usually lead to irreversible structure collapse and cracking generation, which significantly influence the interface stability and electrochemical performance of layered cathodes. This review briefly introduces the background of researches on layered cathodes for SIBs and their basic structure types. Then the origins and effects on layered cathodes of degradation mechanisms are systematically concluded. Finally, we will summarize various interface modification methods including surface engineering, doping modification and electrolyte composition which are aimed to improve interface stability of layered cathodes, perspectives of future research on layered cathodes are mentioned to provide some theoretical proposals.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.31","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140745931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Chen, Wenqin Cai, Zhihua Hu, Qingke Huang, Ao Wang, Zeng Zeng, Jiahao Song, Yan Sun, Qingquan Kong, Wei Feng, Ting Chen, Zhenguo Wu, Yang Song, Xiaodong Guo
{"title":"Damage mechanisms and recent research advances in Ni-rich layered cathode materials for lithium-ion batteries","authors":"Kai Chen, Wenqin Cai, Zhihua Hu, Qingke Huang, Ao Wang, Zeng Zeng, Jiahao Song, Yan Sun, Qingquan Kong, Wei Feng, Ting Chen, Zhenguo Wu, Yang Song, Xiaodong Guo","doi":"10.1002/elt2.27","DOIUrl":"10.1002/elt2.27","url":null,"abstract":"<p>Nickel-rich cathode is considered to be the cathode material that can solve the short-range problem of electric vehicles with excellent electrochemical properties and low price. However, microcracks, lithium–nickel hybridization, and irreversible phase transitions during cycling limit their commercial applications. These issues should be resolved by modifications. In recent years, it has been favored by researchers to solve a large number of problems by combining multiple modification strategies. Therefore, this paper reviews recent developments in various modification techniques for nickel-rich cathode materials that have improved their electrochemical characteristics. The summary of multiple modifications of nickel-rich materials will play a guiding role in future development.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.27","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140236425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ion migration in 3D metal halide perovskite field effect transistors","authors":"Jinghai Li, Yanyan Gong, William W. Yu","doi":"10.1002/elt2.28","DOIUrl":"10.1002/elt2.28","url":null,"abstract":"<p>3D perovskite materials are advancing rapidly in the field of photovoltaics and light-emitting diodes, but the development in field effect transistors (FETs) is limited due to their intrinsic ion migration. Ion migration in perovskite FETs can screen the electric field of the gate and affect its modulation, as well as influence the charge carriers transport, leading to non-ideal device characteristics and lower device stability. Here, we provide a concise review that explains the mechanism of ion migration, summarizes the strategies for suppressing ion migration, and concludes with a discussion of the future prospects for 3D perovskite FETs.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.28","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140261868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}