Electron最新文献

筛选
英文 中文
Damage mechanisms and recent research advances in Ni-rich layered cathode materials for lithium-ion batteries 锂离子电池富镍层状正极材料的损伤机理和最新研究进展
Electron Pub Date : 2024-03-16 DOI: 10.1002/elt2.27
Kai Chen, Wenqin Cai, Zhihua Hu, Qingke Huang, Ao Wang, Zeng Zeng, Jiahao Song, Yan Sun, Qingquan Kong, Wei Feng, Ting Chen, Zhenguo Wu, Yang Song, Xiaodong Guo
{"title":"Damage mechanisms and recent research advances in Ni-rich layered cathode materials for lithium-ion batteries","authors":"Kai Chen,&nbsp;Wenqin Cai,&nbsp;Zhihua Hu,&nbsp;Qingke Huang,&nbsp;Ao Wang,&nbsp;Zeng Zeng,&nbsp;Jiahao Song,&nbsp;Yan Sun,&nbsp;Qingquan Kong,&nbsp;Wei Feng,&nbsp;Ting Chen,&nbsp;Zhenguo Wu,&nbsp;Yang Song,&nbsp;Xiaodong Guo","doi":"10.1002/elt2.27","DOIUrl":"10.1002/elt2.27","url":null,"abstract":"<p>Nickel-rich cathode is considered to be the cathode material that can solve the short-range problem of electric vehicles with excellent electrochemical properties and low price. However, microcracks, lithium–nickel hybridization, and irreversible phase transitions during cycling limit their commercial applications. These issues should be resolved by modifications. In recent years, it has been favored by researchers to solve a large number of problems by combining multiple modification strategies. Therefore, this paper reviews recent developments in various modification techniques for nickel-rich cathode materials that have improved their electrochemical characteristics. The summary of multiple modifications of nickel-rich materials will play a guiding role in future development.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.27","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140236425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion migration in 3D metal halide perovskite field effect transistors 三维金属卤化物包晶场效应晶体管中的离子迁移
Electron Pub Date : 2024-03-06 DOI: 10.1002/elt2.28
Jinghai Li, Yanyan Gong, William W. Yu
{"title":"Ion migration in 3D metal halide perovskite field effect transistors","authors":"Jinghai Li,&nbsp;Yanyan Gong,&nbsp;William W. Yu","doi":"10.1002/elt2.28","DOIUrl":"10.1002/elt2.28","url":null,"abstract":"<p>3D perovskite materials are advancing rapidly in the field of photovoltaics and light-emitting diodes, but the development in field effect transistors (FETs) is limited due to their intrinsic ion migration. Ion migration in perovskite FETs can screen the electric field of the gate and affect its modulation, as well as influence the charge carriers transport, leading to non-ideal device characteristics and lower device stability. Here, we provide a concise review that explains the mechanism of ion migration, summarizes the strategies for suppressing ion migration, and concludes with a discussion of the future prospects for 3D perovskite FETs.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.28","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140261868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 2, Number 1, February 2024 封面图片,第 2 卷第 1 号,2024 年 2 月
Electron Pub Date : 2024-02-28 DOI: 10.1002/elt2.36
Jieli Chen, Xiaohong Gao, Jing Li, Zhenye Kang, Juan Bai, Tianjiao Wang, Yuliang Yuan, Chenghang You, Yu Chen, Bao Yu Xia, Xinlong Tian
{"title":"Cover Image, Volume 2, Number 1, February 2024","authors":"Jieli Chen,&nbsp;Xiaohong Gao,&nbsp;Jing Li,&nbsp;Zhenye Kang,&nbsp;Juan Bai,&nbsp;Tianjiao Wang,&nbsp;Yuliang Yuan,&nbsp;Chenghang You,&nbsp;Yu Chen,&nbsp;Bao Yu Xia,&nbsp;Xinlong Tian","doi":"10.1002/elt2.36","DOIUrl":"https://doi.org/10.1002/elt2.36","url":null,"abstract":"<p>MXene has emerged as an intriguing material for future energy conversion technology due to its superior conductivity, excellent hydrophilic properties, high surface area, versatile chemical composition, and readily synthesis, making it a potential catalyst for the oxygen evolution reaction. This review (DOI: 10.1002/elt2.17) systematically discusses the application of MXene as a component for oxygen evolution reaction (OER), covering the fundamental understanding of OER mechanisms, the basic design principle of MXene-based OER electrocatalysts, and the challenges that may be encountered during the development of this field and possible solutions.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.36","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 2, Number 1, February 2024 封面图片,第 2 卷第 1 号,2024 年 2 月
Electron Pub Date : 2024-02-28 DOI: 10.1002/elt2.35
Xiaoxia Yang, Suning Wang, Hang Li, Jochi Tseng, Zhonghua Wu, Sylvio Indris, Helmut Ehrenberg, Xiaodong Guo, Weibo Hua
{"title":"Cover Image, Volume 2, Number 1, February 2024","authors":"Xiaoxia Yang,&nbsp;Suning Wang,&nbsp;Hang Li,&nbsp;Jochi Tseng,&nbsp;Zhonghua Wu,&nbsp;Sylvio Indris,&nbsp;Helmut Ehrenberg,&nbsp;Xiaodong Guo,&nbsp;Weibo Hua","doi":"10.1002/elt2.35","DOIUrl":"https://doi.org/10.1002/elt2.35","url":null,"abstract":"<p>The cover image (DOI: 10.1002/elt2.18) illustrates the structural evolution mechanism of P3-type Na-deficient layered cathode materials through lithium incorporation. At the base rests a structural model of P3-type layered oxide, symbolizing a continuum from the present to the future, showcasing its potential as a cathode material for sodium-ion batteries. Above it, there is an O3-type layered oxide comprised of lithium ions, oxygen ions, and other transition metal ions. When subjected to high-temperature forces (depicted by the yellow light at the image's center), interaction between the O3-type and P3-type oxides triggers charge transfer (visualized as lightning) and ion transport (illustrated through particle motion), leading to a sequence of structural alterations culminating in diverse phase compositions of layered oxides.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.35","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 2, Number 1, February 2024 封面图片,第 2 卷第 1 号,2024 年 2 月
Electron Pub Date : 2024-02-28 DOI: 10.1002/elt2.37
Wuwei Mo, Joel Jie Foo, Wee-Jun Ong
{"title":"Cover Image, Volume 2, Number 1, February 2024","authors":"Wuwei Mo,&nbsp;Joel Jie Foo,&nbsp;Wee-Jun Ong","doi":"10.1002/elt2.37","DOIUrl":"https://doi.org/10.1002/elt2.37","url":null,"abstract":"<p>2D carbon-based heterostructured electrocatalysts have recently emerged as one of the promising nanomaterials to drive sustainable hydrogen production and combat climate change. Unlike conventional noble metal-based catalysts, such heterostructures made from carbon allotropes and transition metals prevail due to their remarkable activities, cost-effectiveness, and earth abundance. Particularly, this review (DOI: 10.1002/elt2.20) summarizes state-of-the-art 2D carbon nanosheet-, graphene-, and graphdiyne-based heterostructured electrocatalysts towards hydrogen evolution and water splitting from both experimental and computational aspects. Besides, novel structural engineering and facile synthesis strategies are also spotlighted, which are vital to greatly enhance electrocatalytic performances.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.37","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Allying interfacial engineering of 2D carbon nanosheet-, graphene-, and graphdiyne-based heterostructured electrocatalysts toward hydrogen evolution and overall water splitting 基于二维碳纳米片、石墨烯和石墨二乙烯的异质结构电催化剂的界面工程,实现氢气进化和整体水分离
Electron Pub Date : 2024-02-24 DOI: 10.1002/elt2.20
Wuwei Mo, Joel Jie Foo, Wee-Jun Ong
{"title":"Allying interfacial engineering of 2D carbon nanosheet-, graphene-, and graphdiyne-based heterostructured electrocatalysts toward hydrogen evolution and overall water splitting","authors":"Wuwei Mo,&nbsp;Joel Jie Foo,&nbsp;Wee-Jun Ong","doi":"10.1002/elt2.20","DOIUrl":"https://doi.org/10.1002/elt2.20","url":null,"abstract":"<p>Electrochemical hydrogen evolution reaction (HER) and overall water splitting (OWS) for renewable energy generation have recently become a highly promising and sustainable strategy to tackle energy crisis and global warming arising from our overreliance on fossil fuels. Previously, tremendous research breakthroughs have been made in 2D carbon-based heterostructured electrocatalysts in this field. Such heterostructures are distinguished by their remarkable electrical conductivity, exposed active sites, and mechanical stability. Herein, with fundamental mechanisms of electrocatalytic OWS summarized, our review critically emphasized on state-of-the-art 2D carbon nanosheet-, graphene-, and graphdiyne-based heterostructured electrocatalysts in HER and OWS since 2018. Particularly, the three emerging carbonaceous substrates tend to be incorporated with metal carbides, phosphides, dichalcogenides, nitrides, oxides, nanoparticles, single atom catalysts, or layered double hydroxides. Meanwhile, fascinating structural engineering and facile synthesis strategies were also unraveled to establish the structure–activity relationship, which will enlighten future electrocatalyst developments toward ameliorated HER and OWS activities. Additionally, computational results from density functional theory simulations were highlighted as well to better comprehend the synergistic effects within the heterostructures. Finally, current stages and future recommendations of this brand-new electrocatalyst type were concluded and discussed for advanced catalyst designs and future practical applications.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.20","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystallinity engineering of carbon nitride protective coating for ultra-stable Zn metal anodes 用于超稳定锌金属阳极的氮化碳保护涂层结晶工程
Electron Pub Date : 2024-02-23 DOI: 10.1002/elt2.29
Chen Liu, Yuxin Zhu, Shuanlong Di, Jiarui He, Ping Niu, Antonios Kelarakis, Marta Krysmann, Shulan Wang, Li Li
{"title":"Crystallinity engineering of carbon nitride protective coating for ultra-stable Zn metal anodes","authors":"Chen Liu,&nbsp;Yuxin Zhu,&nbsp;Shuanlong Di,&nbsp;Jiarui He,&nbsp;Ping Niu,&nbsp;Antonios Kelarakis,&nbsp;Marta Krysmann,&nbsp;Shulan Wang,&nbsp;Li Li","doi":"10.1002/elt2.29","DOIUrl":"https://doi.org/10.1002/elt2.29","url":null,"abstract":"<p>Ineffective control of dendrite growth and side reactions on Zn anodes significantly retards commercialization of aqueous Zn-ion batteries. Unlike conventional interfacial modification strategies that are primarily focused on component optimization or microstructural tuning, herein, we propose a crystallinity engineering strategy by developing highly crystalline carbon nitride protective layers for Zn anodes through molten salt treatment. Interestingly, the highly ordered structure along with sufficient functional polar groups and pre-intercalated K<sup>+</sup> endows the coating with high ionic conductivity, strong hydrophilicity, and accelerated ion diffusion kinetics. Theoretical calculations also confirm its enhanced Zn adsorption capability compared to commonly reported carbon nitride with amorphous or semi-crystalline structure and bare Zn. Benefiting from the aforementioned features, the as-synthesized protective layer enables a calendar lifespan of symmetric cells for 1100 h and outstanding stability of full cells with capacity retention of 91.5% after 1500 cycles. This work proposes a new conceptual strategy for Zn anode protection.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.29","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in Fe-N-C single-atom site coupled synergistic catalysts for boosting oxygen reduction reaction 促进氧还原反应的 Fe-N-C 单原子位点耦合协同催化剂的最新研究进展
Electron Pub Date : 2024-02-22 DOI: 10.1002/elt2.26
Katam Srinivas, Zhuo Chen, Hesheng Yu, Dawei Liu, Jian Zhen Ou, Ming-qiang Zhu, Yuanfu Chen
{"title":"Recent advances in Fe-N-C single-atom site coupled synergistic catalysts for boosting oxygen reduction reaction","authors":"Katam Srinivas,&nbsp;Zhuo Chen,&nbsp;Hesheng Yu,&nbsp;Dawei Liu,&nbsp;Jian Zhen Ou,&nbsp;Ming-qiang Zhu,&nbsp;Yuanfu Chen","doi":"10.1002/elt2.26","DOIUrl":"https://doi.org/10.1002/elt2.26","url":null,"abstract":"<p>Metal–air batteries, fuel cells, and electrochemical H<sub>2</sub>O<sub>2</sub> production currently attract substantial consideration in the energy sector owing to their efficiency and eco-consciousness. However, their broader use is hindered by the complex oxygen reduction reaction (ORR) that occurs at cathodes and involves intricate electron transfers. Despite the significant ORR performance of platinum-based catalysts, their high cost, operational limitations, and susceptibility to methanol poisoning hinder broader implementation. This emphasizes the need for efficient non-precious metal-based ORR electrocatalysts. A promising approach involves utilizing single-atom catalysts (SACs) featuring metal–nitrogen–carbon (M-N-C) coordination sites. SACs offer advantages such as optimal utilization of metal atoms, uniform active centers, precisely defined catalytic sites, and robust metal–support interactions. However, the symmetrical electron distribution around the central metal atom of a single-atom site (M-N<sub>4</sub>) often results in suboptimal ORR performance. This challenge can be addressed by carefully tailoring the surrounding environment of the active center. This review specifically focuses on recent advancements in the Fe-N<sub>4</sub> environment within Fe-N-C SACs. It highlights the promising strategy of coupling Fe-N<sub>4</sub> sites with metal clusters and/or nanoparticles, which enhances intrinsic activity. By capitalizing on the interplay between Fe-N<sub>4</sub> sites and associated species, overall ORR performance improved. The review combines findings from experimental studies and density functional theory simulations, covering synthesis strategies for Fe-N-C coupled synergistic catalysts, characterization techniques, and the influence of associated particles on ORR activity. By offering a comprehensive outlook, the review aims to encourage research into high-efficiency Fe single-atom sites coupled synergistic catalysts for real-world applications in the coming years.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.26","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering orbital hybridization in heterogeneous catalysis 破译异相催化中的轨道杂化
Electron Pub Date : 2024-01-24 DOI: 10.1002/elt2.16
Xiaoyang Yue, Lei Cheng, Eszter Baráth, Rajenahally V. Jagadeesh, Quanjun Xiang
{"title":"Deciphering orbital hybridization in heterogeneous catalysis","authors":"Xiaoyang Yue,&nbsp;Lei Cheng,&nbsp;Eszter Baráth,&nbsp;Rajenahally V. Jagadeesh,&nbsp;Quanjun Xiang","doi":"10.1002/elt2.16","DOIUrl":"10.1002/elt2.16","url":null,"abstract":"<p>The catalytic coordinate is essentially the evolving frontier orbital interaction while feeding with catalytic materials and adsorbates under proper reaction conditions. The heterogeneous catalytic reaction mechanism involves the initial adsorption and activation of reactants, subsequent intermediate transformation, final target product desorption, and regeneration of catalytic materials. In these catalytic processes, interaction modulations in terms of orbital hybridization/coupling allow an intrinsic control on both thermodynamics and kinetics. Concerned charge transfer and redistribution, orbital splitting and rearrangement with specific orientation, and spin change and crossover pose a formidable challenge on mechanism elucidation; it is hard to precisely correlate the apparent activity and selectivity, let alone rational modulations on it. Therefore, deciphering the orbital couplings inside a catalytic round is highly desirable and the dependent descriptor further provides in-depth insights into catalyst design at the molecule orbital level. This review hopes to provide a comprehensive understanding on orbital hybridizations, modulations, and correlated descriptors in heterogeneous catalysis.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.16","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139601171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving sulfur transformation of lean electrolyte lithium–sulfur battery using nickel nanoparticles encapsulated in N-doped carbon nanotubes 使用包裹在掺 N 碳纳米管中的纳米镍颗粒改善贫电解质锂硫电池的硫转化性能
Electron Pub Date : 2024-01-18 DOI: 10.1002/elt2.19
Ze Zhang, Yuqing Xu, Donggen Xiong, Ji Yu, Jianxin Cai, Yizhong Huang, Zhenyu Yang
{"title":"Improving sulfur transformation of lean electrolyte lithium–sulfur battery using nickel nanoparticles encapsulated in N-doped carbon nanotubes","authors":"Ze Zhang,&nbsp;Yuqing Xu,&nbsp;Donggen Xiong,&nbsp;Ji Yu,&nbsp;Jianxin Cai,&nbsp;Yizhong Huang,&nbsp;Zhenyu Yang","doi":"10.1002/elt2.19","DOIUrl":"10.1002/elt2.19","url":null,"abstract":"<p>Efficient redox reactions of lean electrolyte lithium–sulfur (Li–S) batteries highly rely on rational catalyst design. Herein, we report an electrocatalyst based on N-doped carbon nanotubes (CNT)-encapsulated Ni nanoparticles (Ni@NCNT) as kinetics regulators for Li–S batteries to propel the polysulfide-involving multiphase transformation. Moreover, such a CNT-encapsulation strategy greatly prevents the aggregation of Ni nanoparticles and enables the extraordinary structural stability of the hybrid electrocatalyst, which guarantees its persistent catalytic activity on sulfur redox reactions. When used as a modified layer on a commercial separator, the Ni@NCNT interlayer contributes to stabilizing S cathode and Li anode by significantly retarding the shuttle effect. The corresponding batteries with a 3.5 mg cm<sup>−2</sup> sulfur loading achieve the promising cycle stability with ∼85% capacity retention at the electrolyte/sulfur ratios of 5 and 3 μL mg<sup>−1</sup>. Even at a high loading of 12.2 mg cm<sup>−2</sup>, the battery affords an areal capacity of 7.5 mA h cm<sup>−2</sup>.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.19","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139616461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信