MOF-derived Co/C-anchored MoS2-based phase change materials toward thermal management and microwave absorption

Electron Pub Date : 2024-07-03 DOI:10.1002/elt2.56
Yang Li, Xukang Han, Jiaying Zhu, Yuhao Feng, Panpan Liu, Xiao Chen
{"title":"MOF-derived Co/C-anchored MoS2-based phase change materials toward thermal management and microwave absorption","authors":"Yang Li,&nbsp;Xukang Han,&nbsp;Jiaying Zhu,&nbsp;Yuhao Feng,&nbsp;Panpan Liu,&nbsp;Xiao Chen","doi":"10.1002/elt2.56","DOIUrl":null,"url":null,"abstract":"<p>With the miniaturization and integration of electronic devices, developing advanced multifunctional phase change materials (PCMs) integrating thermal storage, thermal conduction, and microwave absorption to address electromagnetic interference, thermal dissipation, and instantaneous thermal shock is imperative. Herein, we proposed an extensible strategy to synthesize MOF-derived Co/C-anchored MoS<sub>2</sub>-based PCMs using high-temperature carbonation of flower-like MoS<sub>2</sub> grown in situ by ZIF67 and vacuum impregnation of paraffin. The resulting MoS<sub>2</sub>@Co/C-paraffin composite PCMs exhibited good thermal storage density, thermal cycling stability, and long-term durability. The thermal conductivity of composite PCMs was 44% higher than that of pristine paraffin due to the construction of low interfacial thermal resistance. More attractively, our designed composite PCMs also possessed −57.15 dB minimum reflection loss at 9.2 GHz with a thickness of 3.0 mm, corresponding to an effective absorption bandwidth of 3.86 GHz. The excellent microwave absorption was attributed to the multicomponent synergy of magnetic loss from Co nanoparticles and conductive loss from MOF-derived carbon layers, and multiple reflection of MoS<sub>2</sub> nanowrinkle, along with good impedance matching. This study provided a meaningful reference for the widespread application of composite PCMs combining thermal storage, thermal conduction, and microwave absorption in high-power miniaturized electronic devices.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.56","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the miniaturization and integration of electronic devices, developing advanced multifunctional phase change materials (PCMs) integrating thermal storage, thermal conduction, and microwave absorption to address electromagnetic interference, thermal dissipation, and instantaneous thermal shock is imperative. Herein, we proposed an extensible strategy to synthesize MOF-derived Co/C-anchored MoS2-based PCMs using high-temperature carbonation of flower-like MoS2 grown in situ by ZIF67 and vacuum impregnation of paraffin. The resulting MoS2@Co/C-paraffin composite PCMs exhibited good thermal storage density, thermal cycling stability, and long-term durability. The thermal conductivity of composite PCMs was 44% higher than that of pristine paraffin due to the construction of low interfacial thermal resistance. More attractively, our designed composite PCMs also possessed −57.15 dB minimum reflection loss at 9.2 GHz with a thickness of 3.0 mm, corresponding to an effective absorption bandwidth of 3.86 GHz. The excellent microwave absorption was attributed to the multicomponent synergy of magnetic loss from Co nanoparticles and conductive loss from MOF-derived carbon layers, and multiple reflection of MoS2 nanowrinkle, along with good impedance matching. This study provided a meaningful reference for the widespread application of composite PCMs combining thermal storage, thermal conduction, and microwave absorption in high-power miniaturized electronic devices.

Abstract Image

基于 MOF 衍生 Co/C-anchored MoS2 的相变材料,用于热管理和微波吸收
随着电子设备的微型化和集成化,开发集蓄热、热传导和微波吸收于一体的先进多功能相变材料 (PCM) 以解决电磁干扰、热耗散和瞬时热冲击问题势在必行。在此,我们提出了一种可扩展的策略,利用 ZIF67 对原位生长的花状 MoS2 进行高温碳化和石蜡真空浸渍,合成 MOF 衍生的 Co/C-anchored MoS2 基 PCM。所制备的 MoS2@Co/C-paraffin 复合 PCM 具有良好的蓄热密度、热循环稳定性和长期耐久性。由于构建了低界面热阻,复合 PCM 的热导率比原始石蜡高 44%。更吸引人的是,我们设计的复合 PCM 在 9.2 GHz 频率下具有 -57.15 dB 的最小反射损耗,厚度为 3.0 mm,有效吸收带宽为 3.86 GHz。优异的微波吸收性能归功于 Co 纳米粒子的磁性损耗、MOF 衍生碳层的导电损耗、MoS2 纳米皱纹的多重反射以及良好的阻抗匹配等多组分协同作用。这项研究为集热存储、热传导和微波吸收于一体的复合 PCM 在大功率微型电子设备中的广泛应用提供了有意义的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信