{"title":"Research on the Voltage Supporting Capability of Multi-VSC-HVDC Subsystems Operation Strategy to Receiving-end LCC-HVDC Network in Weak AC Grid","authors":"Tao Li;Yongli Li;Yuchen Zhu","doi":"10.30941/CESTEMS.2023.00007","DOIUrl":"https://doi.org/10.30941/CESTEMS.2023.00007","url":null,"abstract":"For the hybrid multi-infeed HVDC system in which the receiving-end grid is a strong AC grid including LCC-HVDC subsystems and multiple VSC-HVDC subsystems, it has higher voltage support capability. However, for weak AC grid, the voltage support capability of the multi-VSC-HVDC subsystems to the LCC-HVDC subsystem (voltage support capability-mVSCs-LCC) can resist the risk of commutation failure. Based on this consideration, this paper proposes an evaluation index called Dynamic Voltage Support Strength Factor (DVSF) for the hybrid multi-infeed system, and uses this index to qualitatively judge the voltage support capability-mVSCs-LCC in weak AC grid. In addition, the proposed evaluation index can also indirectly judge the ability of the LCC-HVDC subsystem to suppress commutation failure. Firstly, the mathematical model of the power flow of the LCC and VSC networks in the steady-state is analyzed, and the concept of DVSF applied to hybrid multi-infeed system is proposed. Furthermore, the DVSF index is also used to qualitatively judge the voltage support capability-mVSCs-LCC. Secondly, the influence of multiple VSC-HVDC subsystems with different operation strategies on the DVSF is analyzed with reference to the concept of DVSF. Finally, the indicators proposed in this paper are compared with other evaluation indicators through MATLAB simulation software to verify its effectiveness. More importantly, the effects of multi- VSC-HVDC subsystems using different coordinated control strategies on the voltage support capability of the receiving-end LCC-HVDC subsystem are also verified.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873789/10091481/10018852.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68173251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IGBT Temperature Field Monitoring Based on Reduced-order Model","authors":"Ziyu Zhou;Yi Sui;Xu Zhang;Chengde Tong;Ping Zheng;Mingjun Zhu","doi":"10.30941/CESTEMS.2023.00005","DOIUrl":"https://doi.org/10.30941/CESTEMS.2023.00005","url":null,"abstract":"With the rapid development of the world economy, IGBT has been widely used in motor drive and electric energy conversion. In order to timely detect the fatigue damage of IGBT, it is necessary to monitor the junction temperature of IGBT. In order to realize the fast calculation of IGBT junction temperature, a finite element method of IGBT temperature field reduction is proposed in this paper. Firstly, the finite element calculation process of IGBT temperature field is introduced and the linear equations of finite element calculation of temperature field are derived. Temperature field data of different working conditions are obtained by finite element simulation to form the sample space. Then the covariance matrix of the sample space is constructed, whose proper orthogonal decomposition and modal extraction are carried out. Reasonable basis vector space is selected to complete the low dimensional expression of temperature vector inside and outside the sample space. Finally, the reduced-order model of temperature field finite element is obtained and solved. The results of the reduced order model are compared with those of the finite element method, and the performance of the reduced-order model is evaluated from two aspects of accuracy and rapidity.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873789/10172142/10018850.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68147993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cong Bai;Zhonggang Yin;Jing Liu;Yanqing Zhang;Xiangdong Sun
{"title":"Integrated Sliding Mode Velocity Control of Linear Permanent Magnet Synchronous Motor with Thrust Ripple Compensation","authors":"Cong Bai;Zhonggang Yin;Jing Liu;Yanqing Zhang;Xiangdong Sun","doi":"10.30941/CESTEMS.2023.00003","DOIUrl":"https://doi.org/10.30941/CESTEMS.2023.00003","url":null,"abstract":"In this paper, a compound sliding mode velocity control scheme with a new exponential reaching law (NERL) with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor (LPMSM) control system. A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law (CERL). Furthermore, the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance. Thus, a thrust ripple compensation strategy on the basis of extend Kalman filter (EKF) theory is proposed. The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness. The effectiveness of the proposal is validated with experimental results.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873789/10091481/10018848.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68171833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-objective Hierarchical Optimization of Interior Permanent Magnet Synchronous Machines Based on Rotor Surface Modification","authors":"Ran Xu;Wenming Tong","doi":"10.30941/CESTEMS.2022.00046","DOIUrl":"https://doi.org/10.30941/CESTEMS.2022.00046","url":null,"abstract":"To solve the problem of large torque ripple of interior permanent magnet synchronous motor (IPMSM), the rotor surface notch design method was used for V-type IPMSM. In order to accurately obtain the optimal parameter values to improve the torque performance of the motor, this paper takes the output torque capacity and torque ripple as the optimization objectives, and proposes a multi-objective layered optimization method based on the parameter hierarchical design combined with Taguchi method and response surface method (RSM). The conclusion can be drawn by comparing the electromagnetic performance of the motor before and after optimization, the proposed IPMSM based on the rotor surface notch design can not only improve the output torque, but also play an obvious inhibition effect on the torque ripple.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873789/10004905/10004935.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68148149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal Pole Ratio of Spoke-type Permanent Magnet Vernier Machines for Direct-drive Applications","authors":"Yu Zhao;Dawei Li;Xiang Ren;Ronghai Qu;Jianbo Sun;Ping Yu","doi":"10.30941/CESTEMS.2022.00057","DOIUrl":"https://doi.org/10.30941/CESTEMS.2022.00057","url":null,"abstract":"Due to magnetic gearing effects, spoke-type permanent magnet vernier machines (ST-PMVMs) have the merit of high torque density, where an extra torque amplification coefficient, i.e., pole ratio (the pole-pair ratio of PMs to armature windings) is introduced. However, different from surface-mounted PMVM, the variation of torque against pole ratio in ST-PMVMs is non-linear, which is increased at first and then decreased. This article is devoted to identify the optimal pole ratio of ST-PMVMs by equivalent magnetic circuit model. It is found that except the P\u0000<inf>r</inf>\u0000<sup>th</sup>\u0000 air-gap magnetomotive force (MMF) harmonic having the same pole-pair of PM, the Pa\u0000<sup>th</sup>\u0000air-gap MMF harmonic having the same pole-pair of armature winding is also induced due to the modulation of doubly salient air-gap structure. The P\u0000<inf>r</inf>\u0000<sup>th</sup>\u0000 MMF harmonic produces positive torque, while Pa\u0000<sup>th</sup>\u0000MMF harmonic produces negative torque. With the increase of pole ratio, the proportion of Pa\u0000<sup>th</sup>\u0000MMF harmonic as well as negative torque is increased, which reduces the advantages of high pole ratio coefficient. Further, the influence of dimension parameters on the performance of ST-PMVMs under different pole ratio are investigated. Results show that ST-PMVMs with pole ratio 2.6 have high torque density, low cogging torque and high power factor simultaneously. Finally, a prototype is manufactured to validate the analysis.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873789/10004905/10004928.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68148144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Xu;T. R. He;Z. Q. Zhu;H. Bin;D. Wu;L. M. Gong;J. T. Chen
{"title":"Investigation of Optimal Split Ratio of 6-Slot/2-pole High Speed Permanent Magnet Motor with Toroidal Winding","authors":"F. Xu;T. R. He;Z. Q. Zhu;H. Bin;D. Wu;L. M. Gong;J. T. Chen","doi":"10.30941/CESTEMS.2022.00045","DOIUrl":"https://doi.org/10.30941/CESTEMS.2022.00045","url":null,"abstract":"Split ratio, i.e. the ratio of stator inner diameter to outer diameter, has a closed relationship with electromagnetic performance of permanent magnet (PM) motors. In this paper, the toroidal windings with short end-winding axial length are employed in the 6-slot/2-pole (6s/2p) PM motor for high speed applications. The split ratio is optimized together with the ratio of inner slot to outer slot area, i.e. slot ratio, considering stator total loss (stator iron loss and copper loss). In addition, the influence of maximum stator iron flux density and tooth-tip on the optimal split ratio, slot ratio, and average torque is investigated. The analytical predictions show that when the slot ratio is 0.5, the maximum torque can be achieved, and the optimal split ratio increases with the decrease of slot ratio, as confirmed by the finite element (FE) analyses. Finally, some of predicted results are verified by the measured results of 6s/2p prototype motor with 0.5 slot ratio.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873789/10004905/10004934.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68148148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal Designs of Wound Field Switched Flux Machines with Different DC Windings Configurations","authors":"Wenting Wang;Yuankui Wang;Enlin Ma;Lijian Wu","doi":"10.30941/CESTEMS.2022.00047","DOIUrl":"https://doi.org/10.30941/CESTEMS.2022.00047","url":null,"abstract":"Wound field switched flux (WFSF) machines exhibits characteristics of the simple robust rotor, flexible flux-adjustable capability, and no risk of demagnetization. However, they suffer from a poor torque density compared with permanent magnet machines due to the saturation. Therefore, in this paper, two WFSF machines with single- and double-layer DC windings, respectively, are optimized for the maximum torque. The end-winding (EW) lengths differ in these two machines, which can affect the optimal design. Design parameters including the DC to armature winding copper loss ratio, slot area ratio and split ratio are optimized when two machines have the same copper loss and overall sizes. In addition, the influence of the flux density ratio, total copper loss, air-gap length and aspect ratio on the optimal split ratio is investigated using the finite element method and results are explained through the analytical model accounting for the saturation. It is discovered that the EWs have no effect on the optimal copper loss ratio, which is unity. In terms of the slot area ratio, the machine with single-layer DC windings prefers smaller DC slot areas than armature slot areas. In the WFSF machine with longer EWs, the optimal split ratio becomes smaller. Moreover, compared with other parameters, the flux density ratio can significantly affect the optimal split ratio.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873789/10004905/10004933.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68152843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two-vector Dimensionless Model Predictive Control of PMSM Drives Based on Fuzzy Decision Making","authors":"Nabil Farah;Gang Lei;Jianguo Zhu;Youguang Guo","doi":"10.30941/CESTEMS.2022.00051","DOIUrl":"https://doi.org/10.30941/CESTEMS.2022.00051","url":null,"abstract":"Model predictive controls (MPCs) with the merits of non-linear multi-variable control can achieve better performance than other commonly used control methods for permanent magnet synchronous motor (PMSM) drives. However, the conventional MPCs have various issues, including unsatisfactory steady-state performance, variable switching frequency, and difficult selection of appropriate weighting factors. This paper proposes two different improved MPC methods to deal with these issues. One method is the two-vector dimensionless model predictive torque control (MPTC). Two cost functions (torque and flux) and fuzzy decision-making are used to eliminate the weighting factor and select the first optimum vector. The torque cost function selects a second vector whose duty cycle is determined based on the torque error. The other method is the two-vector dimensionless model predictive current control (MPCC). The first vector is selected the same as in the conventional MPC method. Two separate current cost functions and fuzzy decision-making are used to select the second vector whose duty cycle is determined based on the current error. Both proposed methods utilize the space vector PWM modulator to regulate the switching frequency. Numerical simulation results show that the proposed methods have better steady-state and transient performances than the conventional MPCs and other existing improved MPCs.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873789/10004905/10004937.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68148151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electromagnetic Performance Prediction for the Symmetrical Dual Three-phase Surface-mounted PMSM under Open-phase Faults Based on Accurate Subdomain Model","authors":"Zhe Liang;Deliang Liang;Peng Kou;Shaofeng Jia","doi":"10.30941/CESTEMS.2022.00054","DOIUrl":"https://doi.org/10.30941/CESTEMS.2022.00054","url":null,"abstract":"The paper presents an accurate analytical subdomain model for predicting the electromagnetic performance in the symmetrical dual three-phase surface-mounted permanent magnet synchronous machine (PMSM) under open-phase faulty conditions. The model derivations are extended from previous accurate subdomain models accounting for slotting effects. Compared with most conventional subdomain models for traditional three-phase machines with nonoverlapping winding arrangement, the subdomain model proposed in this paper applied for the 24-slot/4-pole dual three-phase machine with symmetrical overlapping winding arrangement. In order to investigate the postfault electromagnetic performance, the reconfigured phase currents and then current density distribution in stator slots under different open-circuit conditions are discussed. According to the developed model and postfault current density distribution, the steady-state electromagnetic performance, such as the electromagnetic torque and unbalanced magnetic force, under open-circuit faulty conditions are obtained. For validation purposes, finite element analysis (FEA) is employed to validate the analytical results. The result indicate that the postfault electromagnet performance can be accurately predicted by the proposed subdomain model, which is in good agreement with FEA results.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873789/10004905/10004927.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68148153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Zero-sequence Current Suppressing Strategy for Dual Three-phase Permanent Magnet Synchronous Machines Connected with Single Neutral Point","authors":"Zongwang Li;Yuxuan Du;Jinghua Ji;Tao Tao;Wenxiang Zhao","doi":"10.30941/CESTEMS.2022.00058","DOIUrl":"https://doi.org/10.30941/CESTEMS.2022.00058","url":null,"abstract":"Dual three-phase permanent-magnet synchronous machines (DTP-PMSM) connected with a single neutral point provide a loop for zero-sequence current (ZSC). This paper proposes a novel space vector pulse width modulation (SVPWM) strategy to suppress the ZSC. Five vectors are selected as basic voltage vectors in one switching period. The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector. To suppress the ZSC, a non-zero zero-sequence voltage (ZSV) is generated to compensate the third harmonic back-EMF. Rather than triangular carrier modulation, the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals. The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane. With the proposed method, the ZSC can be considerably reduced. The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873789/10004905/10004917.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68148145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}