CES Transactions on Electrical Machines and Systems最新文献

筛选
英文 中文
Winding Function Model-Based Performance Evaluation of a PM Transverse Flux Generator for Applications in Direct-Drive Systems 基于绕组功能模型的直驱系统应用永磁横向磁通发电机性能评估
CES Transactions on Electrical Machines and Systems Pub Date : 2024-06-03 DOI: 10.30941/CESTEMS.2024.00013
Mehrage Ghods;Jawad Faiz;Ali A. Pourmoosa
{"title":"Winding Function Model-Based Performance Evaluation of a PM Transverse Flux Generator for Applications in Direct-Drive Systems","authors":"Mehrage Ghods;Jawad Faiz;Ali A. Pourmoosa","doi":"10.30941/CESTEMS.2024.00013","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00013","url":null,"abstract":"The magnetic flux in a permanent magnet transverse flux generator (PMTFG) is three-dimensional (3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method (FEM) is highly accurate and reliable for machine simulation, it requires a long computation time, which is crucial when it is to be used in an iterative optimization process. Therefore, an alternative to 3D-FEM is required as a rapid and accurate analytical technique. This paper presents an analytical model for PMTFG analysis using winding function method. To obtain the air gap MMF distribution, the excitation magneto-motive force (MMF) and the turn function are determined based on certain assumptions. The magnetizing inductance, flux density, and back-electro-magneto-motive force of the winding are then determined. To assess the accuracy of the proposed method, the analytically calculated parameters of the generator are compared to those obtained by a 3D-FEM. The presented method requires significantly shorter computation time than the 3D-FEM with comparable accuracy.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10545422","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coordinated Capacitor Voltage Balancing Method for Cascaded H-Bridge Inverter with Supercapacitor and DC-DC Stage 带超级电容器和 DC-DC 级的级联 H 桥逆变器的协调电容器电压平衡方法
CES Transactions on Electrical Machines and Systems Pub Date : 2024-06-03 DOI: 10.30941/CESTEMS.2024.00019
Ye Zhang;Zixin Li;Fanqiang Gao;Cong Zhao;Yaohua Li
{"title":"Coordinated Capacitor Voltage Balancing Method for Cascaded H-Bridge Inverter with Supercapacitor and DC-DC Stage","authors":"Ye Zhang;Zixin Li;Fanqiang Gao;Cong Zhao;Yaohua Li","doi":"10.30941/CESTEMS.2024.00019","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00019","url":null,"abstract":"Cascaded H-bridge inverter (CHBI) with supercapacitors (SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors within the CHBI, including both the dc-link capacitors and SCs. Balance control over the dc-link capacitor voltages is realized by the dc-dc stage in each submodule (SM), while a hybrid modulation strategy (HMS) is implemented in the H-bridge to balance the SC voltages among the SMs. Meanwhile, the dc-link voltage fluctuations are analyzed under the HMS. A virtual voltage variable is introduced to coordinate the balancing of dc-link capacitor voltages and SC voltages. Compared to the balancing method that solely considers the SC voltages, the presented method reduces the dc-link voltage fluctuations without affecting the voltage balance of SCS. Finally, both simulation and experimental results verify the effectiveness of the presented method.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10545358","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient AC Overvoltage Suppression Orientated Reactive Power Control of the Wind Turbine in the LCC-HVDC Sending Grid LCC-HVDC 送出电网中风力涡轮机的瞬态交流过电压抑制定向无功功率控制
CES Transactions on Electrical Machines and Systems Pub Date : 2024-06-03 DOI: 10.30941/CESTEMS.2024.00020
Bo Pang;Xiao Jin;Quanwang Zhang;Yi Tang;Kai Liao;Jianwei Yang;Zhengyou He
{"title":"Transient AC Overvoltage Suppression Orientated Reactive Power Control of the Wind Turbine in the LCC-HVDC Sending Grid","authors":"Bo Pang;Xiao Jin;Quanwang Zhang;Yi Tang;Kai Liao;Jianwei Yang;Zhengyou He","doi":"10.30941/CESTEMS.2024.00020","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00020","url":null,"abstract":"High-voltage direct current (HVDC) transmission is a crucial way to solve the reverse distribution of clean energy and loads. The line commutated converter-based HVDC (LCC-HVDC) has become a vital structure for HVDC due to its high technological maturity and economic advantages. During the DC fault of LCC-HVDC, such as commutation failure, the reactive power regulation of the AC grid always lags the DC control process, causing overvoltage in the AC sending grid, which brings off-grid risk to the wind power generation based on power electronic devices. Nevertheless, considering that wind turbine generators have fast and flexible reactive power control capability, optimizing the reactive power control of wind turbines to participate in the transient overvoltage suppression of the sending grid not only improves the operational safety at the equipment level but also enhances the voltage stability of the system. This paper firstly analyses the impact of wind turbine's reactive power on AC transient overvoltage. Then, it proposes an improved voltage-reactive power control strategy, which contains a reactive power control delay compensation and a power command optimization based on the voltage time series prediction. The delay compensation is used to reduce the contribution of the untimely reactive power of wind turbines on transient overvoltage, and the power command optimization enables wind turbines to have the ability to regulate transient overvoltage, leading to the variation of AC voltage, thus suppressing the transient overvoltage. Finally, the effectiveness and feasibility of the proposed method are verified in a ±800kV/5000MW LCC-HVDC sending grid model based on MATLAB/Simulink.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10545418","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of Fault-Tolerant Control for Motor Inverter Failure with Operational Quality Considered 考虑运行质量的电机逆变器故障容错控制回顾
CES Transactions on Electrical Machines and Systems Pub Date : 2024-06-03 DOI: 10.30941/CESTEMS.2024.00016
Yuxuan Du;Wenxiang Zhao;Yihua Hu;Jinghua Ji;Tao Tao
{"title":"Review of Fault-Tolerant Control for Motor Inverter Failure with Operational Quality Considered","authors":"Yuxuan Du;Wenxiang Zhao;Yihua Hu;Jinghua Ji;Tao Tao","doi":"10.30941/CESTEMS.2024.00016","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00016","url":null,"abstract":"In recent years, motor drive systems have garnered increasing attention due to their high efficiency and superior control performance. This is especially apparent in aerospace, marine propulsion, and electric vehicles, where high performance, efficiency, and reliability are crucial. The ability of the drive system to maintain long-term fault-tolerant control (FTC) operation after a failure is essential. The likelihood of inverter failures surpasses that of other components in the drive system, highlighting its critical importance. Long-term FTC operation ensures the system retains its fundamental functions until safe repairs or replacements can be made. The focus of developing a FTC strategy has shifted from basic FTC operations to enhancing the post-fault quality to accommodate the realities of prolonged operation post-failure. This paper primarily investigates FTC strategies for inverter failures in various motor drive systems over the past decade. These strategies are categorized into three types based on post-fault operational quality: rescue, remedy, and reestablishment. The paper discusses each typical control strategy and its research focus, the strengths and weaknesses of various algorithms, and recent advancements in FTC. Finally, this review summarizes effective FTC techniques for inverter failures in motor drive systems and suggests directions for future research.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10545419","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Content 内容
{"title":"Content","authors":"","doi":"","DOIUrl":"https://doi.org/","url":null,"abstract":"","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579823","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of the Configuration and Transient Stability of Large-Scale Renewable Energy Generation Through Hybrid DC Transmission 通过混合直流输电实现大规模可再生能源发电的配置和暂态稳定性回顾
CES Transactions on Electrical Machines and Systems Pub Date : 2024-06-01 DOI: 10.30941/CESTEMS.2024.00027
Xinshou Tian;Yongning Chi;Longxue Li;Hongzhi Liu
{"title":"Review of the Configuration and Transient Stability of Large-Scale Renewable Energy Generation Through Hybrid DC Transmission","authors":"Xinshou Tian;Yongning Chi;Longxue Li;Hongzhi Liu","doi":"10.30941/CESTEMS.2024.00027","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00027","url":null,"abstract":"Based on the complementary advantages of Line Commutated Converter (LCC) and Modular Multilevel Converter (MMC) in power grid applications, there are two types of hybrid DC system topologies: one is the parallel connection of LCC converter stations and MMC converter stations, and the other is the series connection of LCC and MMC converter stations within a single station. The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China. This paper first analyzes the system forms and topological characteristics of hybrid DC transmission, introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems. Next, it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems, provides insights into the transient stability of hybrid DC transmission systems, and typical fault ride-through control strategies. Finally, it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system, studies the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the receiving-end converter station, and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579810","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of Three-Phase Soft Switching Inverters and Challenges for Motor Drives 三相软开关逆变器回顾及电机驱动器面临的挑战
CES Transactions on Electrical Machines and Systems Pub Date : 2024-06-01 DOI: 10.30941/CESTEMS.2024.00030
Haifeng Lu;Qiao Wang;Jianyun Chai;Yongdong Li
{"title":"Review of Three-Phase Soft Switching Inverters and Challenges for Motor Drives","authors":"Haifeng Lu;Qiao Wang;Jianyun Chai;Yongdong Li","doi":"10.30941/CESTEMS.2024.00030","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00030","url":null,"abstract":"For electric vehicles (EVs), it is necessary to improve endurance mileage by improving the efficiency. There exists a trend towards increasing the system voltage and switching frequency, contributing to improve charging speed and power density. However, this trend poses significant challenges for high-voltage and high-frequency motor controllers, which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching. The deployment of soft switching technology presents a viable solution to mitigate these issues. This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics. For each type of inverter, the advantages and disadvantages are evaluated. Then, the paper introduces the research progress and control methods of soft switching inverters (SSIs). Moreover, it presents a comparative analysis among the conventional hard switching inverters (HSIs), an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI). Finally, the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579825","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Message from Editors 编辑致辞
CES Transactions on Electrical Machines and Systems Pub Date : 2024-06-01 DOI: 10.30941/CESTEMS.2024.10051
{"title":"Message from Editors","authors":"","doi":"10.30941/CESTEMS.2024.10051","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.10051","url":null,"abstract":"As with the continuous advancement of the low-carbon energy development, the wind power generation experiences fast growth with 441.3 GW installed capacity by Dec. 2023. The high penetration of renewable energy, together with high penetration of power electronic equipment (namely, “double high”), has been altering the steady-state and transient characteristics of wind power generation in a profound way, resulting in the different risk of instability. These stability issues will seriously affect the consumption of renewable energy and threaten the safe supply of electricity. Along with rapid deployment of wind power generation, together with the solar photovoltaic generation, it is expected to be over 1200 GW by 2030.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579826","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient Damping of Virtual Synchronous Generator for Enhancing Synchronization Stability During Voltage Dips 虚拟同步发电机的瞬态阻尼以增强电压骤降期间的同步稳定性
CES Transactions on Electrical Machines and Systems Pub Date : 2024-06-01 DOI: 10.30941/CESTEMS.2024.00021
Shitao Sun;Yu Lei;Guowen Hao;Yi Lu;Jindong Liu;Zhaoxin Song;Jie Zhang
{"title":"Transient Damping of Virtual Synchronous Generator for Enhancing Synchronization Stability During Voltage Dips","authors":"Shitao Sun;Yu Lei;Guowen Hao;Yi Lu;Jindong Liu;Zhaoxin Song;Jie Zhang","doi":"10.30941/CESTEMS.2024.00021","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00021","url":null,"abstract":"Virtual synchronous generators (VSGs) are widely introduced to the renewable power generation, the variable-speed pumped storage units, and so on, as a promising grid-forming solution. It is noted that VSGs can provide virtual inertia for frequency support, but the larger inertia would worsen the synchronization stability, referring to keeping synchronization with the grid during voltage dips. Thus, this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips. It is revealed that the loss of synchronization (LOS) of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists. In order to enhance synchronization stability during voltage dips, the transient damping is proposed, which is generated by the frequency deviation in active power loop. Additionally, the proposed method can realize seamless switching between normal state and grid fault. Moreover, detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips. Finally, the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579824","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design Optimization of a Self-Circulated Hydrogen Cooling System for a PM Wind Generator Based on Taguchi Method 基于田口方法的永磁风力发电机自循环氢气冷却系统优化设计
CES Transactions on Electrical Machines and Systems Pub Date : 2024-06-01 DOI: 10.30941/CESTEMS.2024.00024
Gaojia Zhu;Yunhao Li;Longnv Li
{"title":"Design Optimization of a Self-Circulated Hydrogen Cooling System for a PM Wind Generator Based on Taguchi Method","authors":"Gaojia Zhu;Yunhao Li;Longnv Li","doi":"10.30941/CESTEMS.2024.00024","DOIUrl":"https://doi.org/10.30941/CESTEMS.2024.00024","url":null,"abstract":"With the continuous improvement of permanent magnet (PM) wind generators' capacity and power density, the design of reasonable and efficient cooling structures has become a focus. This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator. The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades, and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator. According to the structural parameters of the cooling system, the Taguchi method is used to decouple the structural variables. The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed, and the appropriate cooling structure scheme is determined.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579827","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信