Cooling System Design Optimization of an Enclosed PM Traction Motor for Subway Propulsion Systems

Longnv Li;Nan Jia;Xizhe Wang;Yiran Yun;Gaojia Zhu
{"title":"Cooling System Design Optimization of an Enclosed PM Traction Motor for Subway Propulsion Systems","authors":"Longnv Li;Nan Jia;Xizhe Wang;Yiran Yun;Gaojia Zhu","doi":"10.30941/CESTEMS.2023.00037","DOIUrl":null,"url":null,"abstract":"This paper presents the design optimization of a self-circulated ventilation system for an enclosed permanent magnet (PM) traction motor utilized in the propulsion systems for subway trains. In order to analyze accurately the machine's inherent cooling capacity when the train is running, the ambient airflow and the related heat transfer coefficient (HTC) are numerically investigated considering synchronously the bogie installation structure. The machine is preliminary cooled with air ducts set on the motor shell, and the fluidic-thermal field distributions with only the shell air duct cooling are numerically calculated. During simulations, the HTC obtained in the former steps is applied to the external surface of the machine to model the inherent cooling characteristic caused by the train movement. To reduce the temperature rise and thus guarantee the motor's working reliability, an internal self-circulated air cooling system is proposed according to the machine temperature distribution. The air enclosed in the end-caps is driven by the blades mounted on both sides of the rotor core and forms two air circuits to bring the excessive power losses generated in the heating components to cool regions. The fluid flow and temperature rise distributions of the cooling system's structural parameters are further improved by the Taguchi method in order to confirm the efficacy of the internal air cooling system.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10181101","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CES Transactions on Electrical Machines and Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10181101/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the design optimization of a self-circulated ventilation system for an enclosed permanent magnet (PM) traction motor utilized in the propulsion systems for subway trains. In order to analyze accurately the machine's inherent cooling capacity when the train is running, the ambient airflow and the related heat transfer coefficient (HTC) are numerically investigated considering synchronously the bogie installation structure. The machine is preliminary cooled with air ducts set on the motor shell, and the fluidic-thermal field distributions with only the shell air duct cooling are numerically calculated. During simulations, the HTC obtained in the former steps is applied to the external surface of the machine to model the inherent cooling characteristic caused by the train movement. To reduce the temperature rise and thus guarantee the motor's working reliability, an internal self-circulated air cooling system is proposed according to the machine temperature distribution. The air enclosed in the end-caps is driven by the blades mounted on both sides of the rotor core and forms two air circuits to bring the excessive power losses generated in the heating components to cool regions. The fluid flow and temperature rise distributions of the cooling system's structural parameters are further improved by the Taguchi method in order to confirm the efficacy of the internal air cooling system.
地铁牵引系统中封闭式永磁牵引电机冷却系统的优化设计
本文介绍了地铁列车推进系统中使用的封闭式永磁(PM)牵引电机自循环通风系统的优化设计。为了准确分析列车运行时电机的固有冷却能力,本文对环境气流和相关传热系数(HTC)进行了数值研究,并同步考虑了转向架的安装结构。通过设置在电机外壳上的风道对机器进行初步冷却,并对仅采用外壳风道冷却的流体热场分布进行了数值计算。在模拟过程中,将前几步中获得的 HTC 应用于机器外表面,以模拟列车运动引起的固有冷却特性。为了降低温升,从而保证电机的工作可靠性,根据机器的温度分布,提出了一种内部自循环空气冷却系统。封闭在端盖中的空气由安装在转子铁芯两侧的叶片驱动,形成两个空气回路,将加热部件中产生的过多功率损耗带到冷却区域。通过田口方法进一步改进了冷却系统结构参数的流体流量和温升分布,以确认内部空气冷却系统的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信