Cascaded Model Predictive Control of Six-Phase Permanent Magnet Synchronous Motor with Fault Tolerant Ability

Ling Feng;Zhaohui Wang;Jianghua Feng;Wensheng Song
{"title":"Cascaded Model Predictive Control of Six-Phase Permanent Magnet Synchronous Motor with Fault Tolerant Ability","authors":"Ling Feng;Zhaohui Wang;Jianghua Feng;Wensheng Song","doi":"10.30941/CESTEMS.2023.00033","DOIUrl":null,"url":null,"abstract":"In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much more complicated compared with three-phase motors due to the increased degree of freedom. Finite control set model predictive control can reduce the difficulties of controlling six-phase motors because it does not require modulation process. In this paper, a cascaded model predictive control strategy is proposed for the optimal control of high-power six-phase permanent magnet synchronous motors. Firstly, the current prediction model of torque and harmonic subspaces are established by decoupling the six-phase spatial variables. Secondly, a cascaded cost function with fault-tolerant capability is proposed to eliminate the weighting factor in the cost function. And finally, the proposed strategy is demonstrated through theoretical analysis and experiments. It is validated that the proposed method is able to maintain excellent steady-state control accuracy and fast dynamic response while significantly reduce the control complexity of the system. Besides, it can easily achieve fault-tolerant operation under open-phase fault.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873789/10272303/10158482.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CES Transactions on Electrical Machines and Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10158482/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much more complicated compared with three-phase motors due to the increased degree of freedom. Finite control set model predictive control can reduce the difficulties of controlling six-phase motors because it does not require modulation process. In this paper, a cascaded model predictive control strategy is proposed for the optimal control of high-power six-phase permanent magnet synchronous motors. Firstly, the current prediction model of torque and harmonic subspaces are established by decoupling the six-phase spatial variables. Secondly, a cascaded cost function with fault-tolerant capability is proposed to eliminate the weighting factor in the cost function. And finally, the proposed strategy is demonstrated through theoretical analysis and experiments. It is validated that the proposed method is able to maintain excellent steady-state control accuracy and fast dynamic response while significantly reduce the control complexity of the system. Besides, it can easily achieve fault-tolerant operation under open-phase fault.
具有容错能力的六相永磁同步电动机级联模型预测控制
在大功率电力传动领域,多相电动机具有功率密度高、容错能力强、控制灵活等优点。但由于自由度的增加,与三相电机相比,它们的解耦控制和调制过程要复杂得多。有限控制集模型预测控制不需要调制过程,可以降低六相电机的控制难度。针对大功率六相永磁同步电动机的最优控制问题,提出了一种级联模型预测控制策略。首先,通过解耦六个相位空间变量,建立了转矩和谐波子空间的电流预测模型。其次,提出了一种具有容错能力的级联代价函数,以消除代价函数中的权重因子。最后,通过理论分析和实验验证了所提出的策略。验证了该方法能够保持良好的稳态控制精度和快速的动态响应,同时显著降低了系统的控制复杂度。此外,它还可以很容易地实现断相故障下的容错操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信