Chemical Engineering Research & Design最新文献

筛选
英文 中文
Techno-economic and environmental analysis of decarbonization pathways for cement plants in Uzbekistan 乌兹别克斯坦水泥厂脱碳途径的技术经济和环境分析
IF 3.7 3区 工程技术
Chemical Engineering Research & Design Pub Date : 2024-09-13 DOI: 10.1016/j.cherd.2024.09.003
{"title":"Techno-economic and environmental analysis of decarbonization pathways for cement plants in Uzbekistan","authors":"","doi":"10.1016/j.cherd.2024.09.003","DOIUrl":"10.1016/j.cherd.2024.09.003","url":null,"abstract":"<div><div>The cement industry is a major contributor to global carbon emissions and is characterized by high energy waste, necessitating urgent mitigation efforts. This study explores decarbonization pathways, including energy efficiency, clinker substitution, alternative fuels, and carbon capture, storage, and utilization technologies, for a 1 Mt/year cement plant in Uzbekistan. Waste heat recovery and CO<sub>2</sub> capture technologies are identified as the most effective methods for this plant because of their high efficiency and sustainability potential. By using modeling tools such as Aspen Plus and Aspen Custom Modeler, various scenarios, including the cement plant baseline, amine-based CO<sub>2</sub> absorption, membrane CO<sub>2</sub> separation, and WHR units, are investigated to assess their techno-economic and environmental impacts. The study establishes design parameters for each unit and calculates both capital and operational costs. Compared with conventional amine absorption, the membrane separation process reduces the clinker cost, levelized cost of clinker, CO<sub>2</sub> avoided cost, and CO<sub>2</sub> capture cost by 31 %, 34.3 %, 72 %, and 70 %, respectively. The implementation of a waste heat recovery system with amine absorption and membrane separation further reduces annual indirect CO<sub>2</sub> emissions by 17 % and 35 %, respectively, thereby lowering operating costs. Membrane separation systems prove to be more economical in terms of both capital and operational expenses, particularly when integrated with heat recovery systems, effectively offsetting the higher costs associated with amine-based systems.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of uniform spherical silver powder without dispersants in a confined impinging-jet reactor 在封闭式撞击喷射反应器中无分散剂合成均匀球形银粉
IF 3.7 3区 工程技术
Chemical Engineering Research & Design Pub Date : 2024-09-13 DOI: 10.1016/j.cherd.2024.09.019
{"title":"Synthesis of uniform spherical silver powder without dispersants in a confined impinging-jet reactor","authors":"","doi":"10.1016/j.cherd.2024.09.019","DOIUrl":"10.1016/j.cherd.2024.09.019","url":null,"abstract":"<div><p>Sliver powder is the most common and extensively utilized precious metal powder in electronics, primarily for electronic paste. Herein, micron-sized spherical silver powder was synthesized via a liquid phase reduction method employing silver nitrate as the source of silver and ascorbic acid as the reducing agent in a confined impinging jet reactor (CIJR). The impact of the molar ratio between silver nitrate and ascorbic acid, the flow rate, and the temperature on the particle size of silver powder was investigated. The optimal process conditions for silver powder are as follows: maintain a molar ratio of 1:1 and control the feeding rate at 10 ml/min while operating at 50 ° C. The confined impinging jet reactor offers enhanced control over reaction conditions during the synthesis of silver powder, surpassing the capabilities of traditional batch reactors. The aforementioned optimized methodology was employed to successfully synthesize uniform and spherical silver powder (with an aspect ratio approaching 1) in the low Reynolds number jet, resulting in an average particle size of d<sub>50</sub> = 0.83 μm and a standard deviation of 0.07, without the addition of dispersant. The synthesis method presented here improves the performance of silver powder, simplifies the production process, reduces energy consumption, and minimizes waste generation. These advances yield significant environmental and economic benefits. In the future, with the continuous development and optimization of microreactor technology, this synthesis method is anticipated to play a more prominent role in the commercial-scale production and application of micrometer-sized silver powder.</p></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An adaptive distributed architecture for multi-agent state estimation and control of complex process systems 用于复杂过程系统多代理状态估计和控制的自适应分布式架构
IF 3.7 3区 工程技术
Chemical Engineering Research & Design Pub Date : 2024-09-12 DOI: 10.1016/j.cherd.2024.09.014
{"title":"An adaptive distributed architecture for multi-agent state estimation and control of complex process systems","authors":"","doi":"10.1016/j.cherd.2024.09.014","DOIUrl":"10.1016/j.cherd.2024.09.014","url":null,"abstract":"<div><div>A multi-agent integrated distributed moving horizon estimation (DMHE) and model predictive control (DMPC) framework is developed for complex process networks. This framework utilizes an adaptive spectral community detection-based decomposition approach for a weighted graph representation of the state space model of the system to identify the optimal communities for distributed estimation and control. As the operating conditions of the process network change, the system decomposition adjusts, and the estimation and control agents are reassigned accordingly. These adjustments enable optimizing the integrated DMHE and DMPC architecture, enhancing robustness and closed-loop system performance. The effectiveness of the proposed adaptive distributed multi-agent estimation and control framework is demonstrated through a benchmark benzene alkylation process under various operating conditions. Simulation results show that the proposed multi-agent approach enhances closed-loop performance and computational efficiency compared to traditional system decomposition methods using unweighted hierarchical community detection.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Particle motion characteristics on the rotational flow pneumatic conveying of horizontal-vertical pipeline 水平-垂直管道旋转流气力输送中的颗粒运动特性
IF 3.7 3区 工程技术
Chemical Engineering Research & Design Pub Date : 2024-09-12 DOI: 10.1016/j.cherd.2024.09.010
{"title":"Particle motion characteristics on the rotational flow pneumatic conveying of horizontal-vertical pipeline","authors":"","doi":"10.1016/j.cherd.2024.09.010","DOIUrl":"10.1016/j.cherd.2024.09.010","url":null,"abstract":"<div><p>In this study, a rotational flow device (rotational blade) is developed and installed in the upstream of the particle inlet with the aim of improving the efficiency and capacity of pneumatic conveying. Firstly, this study analyzed the energy-saving effect of rotational flow based on the pressure drop and power consumption. The results shown that the optimal velocity can be reduced by a maximum of 18.7 % and the power consumption coefficient can be reduced by a maximum of 9.8 %. Furthermore, the distributions of particle concentration, velocity and pulsation velocity are analyzed by using electrical capacitance tomography (ECT) and particle image velocimetry (PIV) system. It is found that the particle velocity and velocity pulsation intensity for rotational flow are higher, and they have the ability to enhance particle suspension. Then, the power spectrum of the particle pulsation velocity shown that the rotational flow exhibited higher peak value at lower frequencies, indicating the particles are not easily deposited at pipe bottom. Finally, the auto-correlation of particle pulsation velocity indicated that the particle motion is more stable and has a longer period at low particle concentrations. The skewness factor and probability density function of particle pulsation velocity indicated that the use of rotational blades makes the particle pulsation velocity to deviate from the Gaussian distribution.</p></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tree-based machine learning for predicting Neochloris oleoabundans biomass growth and biological nutrient removal from tertiary municipal wastewater 基于树状结构的机器学习用于预测油菜新孢子虫的生物量增长和三级城市污水中的生物营养去除率
IF 3.7 3区 工程技术
Chemical Engineering Research & Design Pub Date : 2024-09-11 DOI: 10.1016/j.cherd.2024.09.004
{"title":"Tree-based machine learning for predicting Neochloris oleoabundans biomass growth and biological nutrient removal from tertiary municipal wastewater","authors":"","doi":"10.1016/j.cherd.2024.09.004","DOIUrl":"10.1016/j.cherd.2024.09.004","url":null,"abstract":"<div><div>Recently, computational models have been increasingly recognized as valuable tools for addressing key challenges in the operational performance of biological wastewater treatment facilities. In this study, tree-based machine learning approaches, such as decision tree regressor (DTR) and extra tree regressor (ETR), were developed to predict microalgae (<em>Neochloris oleoabundans</em>) biomass growth, culture pH, and nutrient removal efficacy (total nitrogen, TN and total phosphorus, TP) for the first time. The experimental data was obtained through a central composite design (CCD) matrix, and Bayesian optimization was applied to fine-tune the models’ hyperparameters. Model performance was evaluated using indicators such as the coefficient of determination (R²), mean absolute error (MAE), and mean-squared error (MSE). The results showed comparable performance between the DTR and ETR models. For TN removal during testing, the R² values for DTR and ETR were 0.9262 and 0.9789, respectively, with DTR (MSE: 0.00895, MAE: 0.0615) and ETR (MSE: 0.00255, MAE: 0.0352) demonstrating reliable predictions. Overall, the ETR model outperformed DTR in predicting responses. The models' generalization capabilities were also assessed by introducing variations in environmental factors.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of operating condition on the properties of ectoine particles for improving the purification process 操作条件对改进提纯工艺的外藤素颗粒特性的影响
IF 3.7 3区 工程技术
Chemical Engineering Research & Design Pub Date : 2024-09-11 DOI: 10.1016/j.cherd.2024.09.016
{"title":"Effect of operating condition on the properties of ectoine particles for improving the purification process","authors":"","doi":"10.1016/j.cherd.2024.09.016","DOIUrl":"10.1016/j.cherd.2024.09.016","url":null,"abstract":"<div><div>Ectoine, which is produced from methane by methane-oxidizing bacteria, has attracted attention because of its many useful functions in living organisms. It is known that the purification process using alcohol-based solvents is a limiting step in the ectoine production process because of the precipitation of fine particles. This study investigated quantitatively the effects of operating conditions (cooling rate and solvent) on the properties of ectoine particles for improving the efficiency of the ectoine purification process. The experimental results showed that the properties of ectoine particles were significantly influenced by operating condition such as the cooling rate and solvent of feed solution. Furthermore, it was revealed that the critical supersaturation ratio at the nucleation using methanol was approximately ten times higher than using water. Consequently, it was found that the high critical supersaturation ratio at the nucleation induces the precipitation the fine particles that have high filtration resistance. In conclusion, we succeeded in finding the relationship between the operating conditions and properties of ectoine particles.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation and optimization of separation processes for the downstream of the catalytic oxidation of HCl as byproduct from the fluorochemical industry 模拟和优化氟化学工业副产品 HCl 催化氧化下游分离过程
IF 3.7 3区 工程技术
Chemical Engineering Research & Design Pub Date : 2024-09-11 DOI: 10.1016/j.cherd.2024.09.017
{"title":"Simulation and optimization of separation processes for the downstream of the catalytic oxidation of HCl as byproduct from the fluorochemical industry","authors":"","doi":"10.1016/j.cherd.2024.09.017","DOIUrl":"10.1016/j.cherd.2024.09.017","url":null,"abstract":"<div><div>The catalytic oxidation of gaseous HCl with a small amount of HF to Cl<sub>2</sub> is of utmost importance and desire for chlorine recycling in the fluorochemical industry. Herein, based on the results from the catalytic oxidation of HCl as byproduct contaminated with HF and fluorocarbons from the production of 1,1,1,2-tetrafluoroethane (HFC-<strong>134a</strong>) over a recently developed RuO<sub>2</sub>/MgF<sub>2</sub> catalyst, the separation and purification processes of the downstream from the catalytic oxidation unit were simulated and optimized using the Aspen Plus software. In the simulation and optimization, a separation flow for Cl<sub>2</sub> purification was built up and the corresponding mass and energy balances were made as well. The results show that both produced H<sub>2</sub>O vapor and unconverted HCl from the catalytic reactor can be effectively removed by a two-stage cooling dehydration unit coupled with a three-stage drying tower to obtain 29.90 wt% hydrochloric acid. In addition, the relationship between the dehydration amount and the heat load of the drying tower was optimized, showing a H<sub>2</sub>SO<sub>4</sub> (98.00 wt%) consumption of 11.8 kg per ton of Cl<sub>2</sub> produced, <em>i.e.</em>, 11.8 kg/t, in the drying tower. Furthermore, the gaseous mixture of Cl<sub>2</sub> and O<sub>2</sub> can be separated by a pressurized distillation unit, in which the operating pressure and temperature as well as the heat load of the condenser were optimized, showing that a liquified Cl<sub>2</sub> concentration of 99.93 wt% with a recovery efficiency of 97.0 % can be achieved. The current research, therefore, provides some fundamental base for the industrialization of the recovery of Cl<sub>2</sub> from the byproduct HCl in the fluorochemical industry.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-time-scale zone economic model predictive control of micro gas turbine cogeneration systems 微型燃气轮机热电联产系统的双时区经济模型预测控制
IF 3.7 3区 工程技术
Chemical Engineering Research & Design Pub Date : 2024-09-11 DOI: 10.1016/j.cherd.2024.09.015
{"title":"Dual-time-scale zone economic model predictive control of micro gas turbine cogeneration systems","authors":"","doi":"10.1016/j.cherd.2024.09.015","DOIUrl":"10.1016/j.cherd.2024.09.015","url":null,"abstract":"<div><p>The utilization of decentralized micro gas turbine combined heat and power (MGT-CHP) units is considered as a prospective technique in power generation due to its high levels of fuel utilization rates and low emissions. However, the inherent strong coupling and complex timescale multiplicity make it challenging to realize optimal operation. To this end, this paper first establishes a precise mechanism model to attain a thorough understanding of the system properties. By conducting singular perturbation theory, the complex nonlinear system is decomposed into a fast power subsystem and a slow heat subsystem. Then, a dual-time-scale zone economic model predictive control (D-ZEMPC) algorithm, which is comprised of a fast EMPC and a slow EMPC, is applied to achieve dynamic synergy between heat and power supply by actively coordinating the two sub-controllers. Moreover, a zone tracking method is introduced for room temperature control, thereby yielding increased freedom in balancing the economic profits and thermal comfort. The simulation results in three scenarios along with the qualitative and quantitative discussions show that compared with the other two centralized EMPC algorithms, the proposed D-ZEMPC can significantly alleviate computational loads and reduce the simulation time by over 64.5 % while maintaining required thermal comfort with minimum fuel consumption.</p></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical investigation of photovoltaic performance improvement using Al2O3 nanofluid 利用 Al2O3 纳米流体提高光伏性能的数值研究
IF 3.7 3区 工程技术
Chemical Engineering Research & Design Pub Date : 2024-09-10 DOI: 10.1016/j.cherd.2024.09.011
{"title":"Numerical investigation of photovoltaic performance improvement using Al2O3 nanofluid","authors":"","doi":"10.1016/j.cherd.2024.09.011","DOIUrl":"10.1016/j.cherd.2024.09.011","url":null,"abstract":"<div><div>To further elucidate the impact of fluctuations in environmental temperature and radiation intensity within a day on the temperature and performance of photovoltaic systems with and without nanofluid cooling, this study established a photovoltaic panel temperature and efficiency calculation model based on a nanofluid cooling system that considers the dynamic changes of photovoltaic panel temperature and air temperature over time. An empirical formula for predicting photovoltaic panel efficiency has been derived based on experimental data. Then a PV panel temperature and efficiency calculation model is established and validated. The simulation results show that using nanofluids to cool the PV panel can significantly reduce the temperature and improve the PV efficiency. Compared to the bare PV panel, the average PV panel temperature decreases by 7.99 ℃, 8.48 ℃, and 8.92 ℃ respectively when nanofluid volume fraction is 1 vol%, 3 vol%, and 5 vol%, and it decreases by 8.48 ℃, 9.27 ℃, and 9.94 ℃ respectively when nanofluid mass flow rate is 0.08 m<sup>3</sup>/h, 0.10 m<sup>3</sup>/h, and 0.12 m<sup>3</sup>/h. As the nanofluids' concentration increases, nanofluids' cooling ability in the high temperature range also increases.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring granular filter media in sustainable drainage systems (SuDS) for stormwater pollutant adsorption: A pilot study 探索可持续排水系统 (SuDS) 中的颗粒过滤介质对雨水污染物的吸附作用:试点研究
IF 3.7 3区 工程技术
Chemical Engineering Research & Design Pub Date : 2024-09-07 DOI: 10.1016/j.cherd.2024.08.035
{"title":"Exploring granular filter media in sustainable drainage systems (SuDS) for stormwater pollutant adsorption: A pilot study","authors":"","doi":"10.1016/j.cherd.2024.08.035","DOIUrl":"10.1016/j.cherd.2024.08.035","url":null,"abstract":"<div><p>Granular filter media are integral to sustainable drainage systems (SuDS) for their efficiency in removing pollutants from urban runoff. This study focuses on understanding the filtration processes within these media by combining a pilot experimental study with a modeling approach. The experimental study involved characterizing the physical and hydraulic properties of various granular filter media materials, including sand, pea-gravel, gravel, and geotextile membranes. Three laboratory-scale stormwater filtration rigs were tested to evaluate the filter media's pollutant removal capacity and hydraulic performance. This work presents a phenomenological model that predicts the spatial variation in the concentrations of stormwater and urban runoff substances, specifically nitrate ions (NO<sub>3</sub><sup>-</sup>), phosphate ions (PO<sub>4</sub><sup>3-</sup>), chemical oxygen demand (COD), and suspended solids, by studying their concentration profiles. The stormwater quality model was used to predict the concentration profiles for stormwater with an average inflow consisting of 2.9 mg/L nitrates, 3.4 mg/L phosphate ions, 225 mg/L COD, and 3.3 mg/L of suspended solids. The predicted outlet concentrations matched well with measured experimental data. The results showed that adding geotextile membranes to a granular filter significantly improves its ability to adsorb dissolved species for stormwater applications. This research highlights the importance of understanding the physical and hydraulic properties of granular filter media and their impact on stormwater pollutant removal efficiency. The developed model can assist in the design and optimization of stormwater treatment systems by predicting the performance of different filter media materials, allowing for informed decision-making and improved system functionality.</p></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信