乙二醇-水混合物饱和池沸腾过程中的气泡动力学

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Ravi Raushan , Yogesh M. Nimdeo , Gaurav A. Bhaduri , Harish Pothukuchi
{"title":"乙二醇-水混合物饱和池沸腾过程中的气泡动力学","authors":"Ravi Raushan ,&nbsp;Yogesh M. Nimdeo ,&nbsp;Gaurav A. Bhaduri ,&nbsp;Harish Pothukuchi","doi":"10.1016/j.cherd.2025.09.018","DOIUrl":null,"url":null,"abstract":"<div><div>The present study numerically investigates the growth behavior of an isolated vapour bubble during nucleate pool boiling in an ethylene glycol (EG)-water mixture at saturation temperature and atmospheric pressure. EG concentration was varied from 0 % to 50 % by weight, and the isothermal wall superheat <span><math><mrow><mfenced><mrow><mo>∆</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>sup</mi></mrow></msub></mrow></mfenced></mrow></math></span> ranged between 8 and 15 K. A 2D axisymmetric fluid domain (5 mm×12 mm) with a uniform grid of 40 µm size was employed. Simulation was performed using Volume of Fluid (VOF) method in Ansys Fluent, incorporating user-defined functions (udf’s) to model phase change. The study examined the influence of EG concentration and <span><math><mrow><mo>∆</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>sup</mi></mrow></msub></mrow></math></span> on bubble growth dynamics and departure diameter. Results indicate that increasing EG concentration suppresses bubble growth and delays departure. Compared to pure water, a 50 % EG-water mixture exhibited an approximate 20 % reduction in equivalent bubble departure diameter. This reduction is attributed to increase heat and mass transfer resistant at the vapour-liquid interface and lower surface tension of the EG-water mixture. The IR spectroscopy revealed weaker hydrogen bonding and structural changes with increasing EG concentration, enhances the hydrophilicity behavior of EG molecules, thereby promoting bulk dispersion and reducing surface tension.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"222 ","pages":"Pages 377-390"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bubble dynamics in saturated pool boiling of ethylene glycol–water mixtures\",\"authors\":\"Ravi Raushan ,&nbsp;Yogesh M. Nimdeo ,&nbsp;Gaurav A. Bhaduri ,&nbsp;Harish Pothukuchi\",\"doi\":\"10.1016/j.cherd.2025.09.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study numerically investigates the growth behavior of an isolated vapour bubble during nucleate pool boiling in an ethylene glycol (EG)-water mixture at saturation temperature and atmospheric pressure. EG concentration was varied from 0 % to 50 % by weight, and the isothermal wall superheat <span><math><mrow><mfenced><mrow><mo>∆</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>sup</mi></mrow></msub></mrow></mfenced></mrow></math></span> ranged between 8 and 15 K. A 2D axisymmetric fluid domain (5 mm×12 mm) with a uniform grid of 40 µm size was employed. Simulation was performed using Volume of Fluid (VOF) method in Ansys Fluent, incorporating user-defined functions (udf’s) to model phase change. The study examined the influence of EG concentration and <span><math><mrow><mo>∆</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>sup</mi></mrow></msub></mrow></math></span> on bubble growth dynamics and departure diameter. Results indicate that increasing EG concentration suppresses bubble growth and delays departure. Compared to pure water, a 50 % EG-water mixture exhibited an approximate 20 % reduction in equivalent bubble departure diameter. This reduction is attributed to increase heat and mass transfer resistant at the vapour-liquid interface and lower surface tension of the EG-water mixture. The IR spectroscopy revealed weaker hydrogen bonding and structural changes with increasing EG concentration, enhances the hydrophilicity behavior of EG molecules, thereby promoting bulk dispersion and reducing surface tension.</div></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":\"222 \",\"pages\":\"Pages 377-390\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876225004952\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876225004952","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文用数值方法研究了饱和温度和常压下乙二醇-水混合物中核池沸腾过程中孤立气泡的生长行为。EG浓度变化范围为0 % ~ 50 %(重量),等温壁过热度∆Tsup变化范围为8 ~ 15 K。采用均匀网格尺寸为40µm的二维轴对称流体域(5 mm×12 mm)。仿真采用Ansys Fluent中的流体体积(Volume of Fluid, VOF)方法,结合用户定义函数(user-defined functions, udf’s)对相变进行建模。研究了EG浓度和∆Tsup对气泡生长动力学和偏离直径的影响。结果表明,EG浓度的增加抑制了气泡的生长,延缓了气泡的离开。与纯水相比,50%的蛋清-水混合物的等效气泡偏离直径减少了大约20%。这种减少是由于蒸汽-液体界面的传热和传质阻力增加以及eg -水混合物的表面张力降低。红外光谱显示,随着EG浓度的增加,氢键减弱,结构发生变化,增强了EG分子的亲水性,从而促进了体分散,降低了表面张力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bubble dynamics in saturated pool boiling of ethylene glycol–water mixtures
The present study numerically investigates the growth behavior of an isolated vapour bubble during nucleate pool boiling in an ethylene glycol (EG)-water mixture at saturation temperature and atmospheric pressure. EG concentration was varied from 0 % to 50 % by weight, and the isothermal wall superheat Tsup ranged between 8 and 15 K. A 2D axisymmetric fluid domain (5 mm×12 mm) with a uniform grid of 40 µm size was employed. Simulation was performed using Volume of Fluid (VOF) method in Ansys Fluent, incorporating user-defined functions (udf’s) to model phase change. The study examined the influence of EG concentration and Tsup on bubble growth dynamics and departure diameter. Results indicate that increasing EG concentration suppresses bubble growth and delays departure. Compared to pure water, a 50 % EG-water mixture exhibited an approximate 20 % reduction in equivalent bubble departure diameter. This reduction is attributed to increase heat and mass transfer resistant at the vapour-liquid interface and lower surface tension of the EG-water mixture. The IR spectroscopy revealed weaker hydrogen bonding and structural changes with increasing EG concentration, enhances the hydrophilicity behavior of EG molecules, thereby promoting bulk dispersion and reducing surface tension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信