BMEMatPub Date : 2024-05-11DOI: 10.1002/bmm2.12087
Jianhua Hao, Nik Ahmad Nizam Nik Malek, Wan Hairul Anuar Kamaruddin, Jianhua Li
{"title":"Breaking piezoelectric limits of molecules for biodegradable implants","authors":"Jianhua Hao, Nik Ahmad Nizam Nik Malek, Wan Hairul Anuar Kamaruddin, Jianhua Li","doi":"10.1002/bmm2.12087","DOIUrl":"10.1002/bmm2.12087","url":null,"abstract":"<p>In the quest for optimizing biodegradable implants, the exploration of piezoelectric materials stands at the forefront of biomedical engineering research. Traditional piezoelectric materials often suffer from limitations in biocompatibility and biodegradability, significantly impeding their in vivo study and further biomedical application. By leveraging molecular engineering and structural design, a recent innovative approach transcends the conventional piezoelectric limits of the molecules designed for biodegradable implants. The biodegradable molecular piezoelectric implants may open new avenues for their applications in bioenergy harvesting/sensing, implanted electronics, transient medical devices and tissue regeneration.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140988039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbon-based nanodots for biomedical applications and clinical transformation prospects","authors":"Haizhen Ding, Tenghui Xiao, Fangfang Ren, Yu Qiu, Zhiyang Shen, Xuecheng Chen, Ewa Mijowska, Hongmin Chen","doi":"10.1002/bmm2.12085","DOIUrl":"10.1002/bmm2.12085","url":null,"abstract":"<p>Carbon dots (CDs), emerging as a promising class of nanomaterials, have garnered significant interest in the field of biomedicine due to their unique physicochemical properties. This review provides a comprehensive overview of the recent advancements in the biomedical applications of CDs, emphasizing their potential for revolutionizing diagnostics, therapy, and bio-imaging. We discuss the synthesis and functionalization of CDs, which are pivotal in tailoring their properties for specific biomedical applications. The applications of CDs in bioimaging include fluorescence imaging, magnetic resonance imaging, photoacoustic imaging, etc. Additionally, this review delves into the benefits of CDs in the treatment of diseases including cancer, inflammation and Alzheimer's, etc. Finally, we look forward to the future of CDs in the field of biomedicine, emphasizing the necessity of interdisciplinary collaboration to overcome current obstacles and facilitate the clinical translation of CDs-based technologies. This review aims to provide a summary and perspectives on the latest developments of CDs in biomedicine, hoping to inspire further research in this rapidly advancing field.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140988665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A simple yet effective H2S-activated fluorogenic probe for precise imaging of hepatitis and arthritis in situ","authors":"Weier Liang, Yongning Bian, Animesh Samanta, Xueqian Chen, Xiaohe Yu, Yichen Zheng, Xueyun Gao, Dongdong Su","doi":"10.1002/bmm2.12086","DOIUrl":"10.1002/bmm2.12086","url":null,"abstract":"<p>Hepatitis and arthritis are prevalent inflammatory diseases, and the utilization of fluorogenic probes incorporating hydrogen sulfide (H<sub>2</sub>S) as a crucial mediator of inflammation presents significant opportunities for early detection. However, the poor in vivo biodistribution and limited targeted efficacy of molecule probes for inflammation imaging severely impede their ability to differentiate the extent of inflammation and provide real-time monitoring of inflammatory levels. Therefore, we developed a highly efficient H<sub>2</sub>S-activated near-infrared (NIR) fluorogenic probe (hCy-DNP) for real-time tracking and capturing fluctuations in H<sub>2</sub>S levels within inflammatory lesions. hCy-DNP demonstrates an exceptionally sensitive fluorescence response to H<sub>2</sub>S expression, enabling specific differentiation between various levels of lipopolysaccharide (LPS) -stimulated early hepatitis models in situ, while also facilitating visual monitoring for diagnosis and efficacy evaluation of arthritis. Therefore, hCy-DNP offers an innovative tool for exploring early diagnosis and evaluating treatment effectiveness across diverse inflammatory diseases.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12086","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140996519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMEMatPub Date : 2024-04-29DOI: 10.1002/bmm2.12081
Lei Li, Yue Yin, Shengchang Zhang, Junyuan Yang, Pei Li, Huaijuan Zhou, Jinhua Li
{"title":"Triggerable biomaterials-based osteomyelitis theranostics","authors":"Lei Li, Yue Yin, Shengchang Zhang, Junyuan Yang, Pei Li, Huaijuan Zhou, Jinhua Li","doi":"10.1002/bmm2.12081","DOIUrl":"https://doi.org/10.1002/bmm2.12081","url":null,"abstract":"<p>The emergence of multidrug-resistant bacteria poses a significant challenge in the treatment of osteomyelitis, rendering traditional antibiotic treatment strategies inadequate in terms of achieving a complete cure. In recent years, triggerable biomaterial-based, antibiotic-free osteomyelitis treatment strategies have rapidly evolved, demonstrating excellent bactericidal effects. Triggerable biomaterials-based osteomyelitis theranostics encompass physical signal response strategies and host immune modulation approaches. These strategies can be effective against drug-resistant bacteria, circumventing the gradual acquisition of resistance that often accompanies traditional antibiotic treatment. Additionally, the inherent physical properties of the triggerable biomaterials facilitate the precise imaging of osteomyelitis. There is no doubt that triggerable biomaterial-mediated, antibiotic-free therapies are emerging as a trend, which is critically important in combating multidrug-resistant bacteria-induced osteomyelitis. In this review, we summarize the latest advances in osteomyelitis treatment strategies from both pathogen-directed and host-directed perspectives. The design regimens and specific action mechanisms of triggerable biomaterial-based nanoplatforms are also clarified. Finally, we outline the challenges faced by various antibiotic-free therapies and provide an outlook on the prospects for synergistic interactions.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143253498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in biomimetic aggregation-induced emission photosensitizers for photodynamic therapy and immunotherapy","authors":"Shuai Guo, Hui Tang, Yahui Zhang, Zhouyu Wang, Swee Ching Tan","doi":"10.1002/bmm2.12076","DOIUrl":"10.1002/bmm2.12076","url":null,"abstract":"<p>The development of novel photosensitizers (PSs) with aggregation-induced emission (AIE) properties has emerged as a crucial advancement in the field of photodynamic therapy (PDT). However, the versatile applications of AIE PSs are limited by low encapsulation efficiency and inadequate target tissue permeability. Biomimetic technology stands out as a promising strategy to overcome these challenges, aiming to enhance AIE PSs tumor penetration efficacy, and their association with antitumor immune responses. In this review, recent advancements in biomimetic AIE PSs for PDT and immunotherapy are summarized. We start with introducing strategies involving biomimetic AIE PSs based on cell membranes and extracellular vesicles for the combined application of PDT and immunotherapy. We then discuss the preparation of biomimetic AIE PSs nanoparticles. Finally, we briefly outline the challenges and prospects associated with biomimetic AIE PSs.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12076","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140660317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMEMatPub Date : 2024-04-24DOI: 10.1002/bmm2.12082
Lin Han, Zhonghua Yuan, Hui-Min Ren, Weizhuo Song, Ruonan Wu, Jie Li, Zhaoyan Guo, Bingran Yu, Shun Duan, Fu-Jian Xu
{"title":"Infection-responsive polysaccharide-based drug-loaded nano-assembly for dual-modal treatment against drug-resistant bacterial lung infection","authors":"Lin Han, Zhonghua Yuan, Hui-Min Ren, Weizhuo Song, Ruonan Wu, Jie Li, Zhaoyan Guo, Bingran Yu, Shun Duan, Fu-Jian Xu","doi":"10.1002/bmm2.12082","DOIUrl":"10.1002/bmm2.12082","url":null,"abstract":"<p>The escalating issue of lung infections induced by multi-drug resistant (MDR) bacteria is threatening human health. Thus, the development of efficient drug delivery systems is essential to eliminate MDR bacterial lung infections effectively. Herein, we designed inhalable drug-loaded nano-assemblies by the electrostatic interaction between negatively charged sodium alginate and a positively charged antibacterial polymer, quaternized polyethyleneimine (QPEI-C<sub>6</sub>), as well as a kind of typical antibiotic for therapy of lung infection, azithromycin (AZT). By adjusting the feed ratios, we optimized the size of the nano-assembly to approximately 200 nm (STQ<sub>12</sub>), which was beneficial for penetration through the mucus layer and biofilm. In the slightly acidic environment of the infected site, the nano-assembly could dissemble responsively and release AZT and QPEI-C<sub>6</sub>. Because of the combined bactericidal effect, STQ<sub>12</sub> exhibited high bactericidal efficiency against MDR bacteria. In animal experiments, STQ<sub>12</sub> showed notable efficacy against MDR bacterial lung infection. Gene transcriptomic results showed that the main effects of STQ<sub>12</sub> against bacteria were through influencing the bacterial cell components and metabolic processes, and affecting their growth and reproduction. This work provides a promising strategy to treat MDR bacterium-induced lower respiratory tract infections.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140665280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMEMatPub Date : 2024-04-15DOI: 10.1002/bmm2.12083
Chunjie Wang, Xiaoqi Sun, Liangzhu Feng, Zhuang Liu
{"title":"Rational design of a nonclassical liposomal nanoscale drug delivery system for innovative cancer therapy","authors":"Chunjie Wang, Xiaoqi Sun, Liangzhu Feng, Zhuang Liu","doi":"10.1002/bmm2.12083","DOIUrl":"10.1002/bmm2.12083","url":null,"abstract":"<p>Advanced drug delivery systems are widely considered to be powerful approaches for treating cancer and many other diseases because of their superior ability to improve pharmacokinetics, promote lesion-targeted delivery efficacy, and/or reduce the toxic effects of diverse therapeutics. Owing to the unique biomimetic structure of lipid bilayers surrounding aqueous cavities, liposomes have been found to encapsulate various therapeutics, ranging from small molecules with different hydrophobicities to biomacromolecules. With the advent of surface PEGylation, stealth liposomes with excellent in vivo long-circulating behaviors have been generated, thus these liposomes have been extensively explored for the development of liposomal drugs with greatly improved in vivo pharmacokinetic behaviors by functioning as delivery vehicles. Inspired by their successes in clinical practice, stealth liposomes have recently been utilized as the main building scaffold or surface coating layers of other nanoparticulate formulations, which are coined as nonclassical liposomal nanoscale drug delivery systems (NDDSs) in this review, to enable the rational design of next-generation liposomal nanomedicine. Therefore, after overviewing the latest progress in the development of conventional liposome-based nanomedicine, we will introduce the development of these nonclassical liposomal NDDSs as well as their innovative cancer treatment strategies. We will subsequently provide a critical perspective on the future development of new cancer nanomedicines based on these rationally designed nonclassical liposomal NDDSs.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12083","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140702193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMEMatPub Date : 2024-03-12DOI: 10.1002/bmm2.12080
Jingyu Zhang, Jonathan F. Lovell, Jiafu Shi, Yumiao Zhang
{"title":"Nanomaterials for co-immobilization of multiple enzymes","authors":"Jingyu Zhang, Jonathan F. Lovell, Jiafu Shi, Yumiao Zhang","doi":"10.1002/bmm2.12080","DOIUrl":"10.1002/bmm2.12080","url":null,"abstract":"<p>In order to co-immobilize multiple enzymes, a wide range of nanomaterials has been designed to achieve synergistic enzyme activity and enhance catalytic efficiency. Nanomaterials, as carriers for enzyme co-immobilization, possess various advantages such as tunable morphology and size, high specific surface area, and abundant chemically active sites. They can significantly enhance enzyme stability, activity, and catalytic efficiency. We overview the commonly used methods and strategies of enzyme co-immobilization. This review further summarizes the latest research advances in nanomaterials for enzyme co-immobilization applications over the past 5 years. Meanwhile, the advantages and challenges of these nanomaterials used for enzyme co-immobilization as well as some potential future directions are also discussed.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140249182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMEMatPub Date : 2024-03-04DOI: 10.1002/bmm2.12079
Liqiang Zhou, Yangmengfan Chen, Dong Xie, Kun Li, Xinwu Cui, Christoph F. Dietrich, Andreas K. Nüssler, Xuanjun Zhang
{"title":"Regulated cell death-amplified sonodynamic anti-tumor immune nanotherapeutics","authors":"Liqiang Zhou, Yangmengfan Chen, Dong Xie, Kun Li, Xinwu Cui, Christoph F. Dietrich, Andreas K. Nüssler, Xuanjun Zhang","doi":"10.1002/bmm2.12079","DOIUrl":"https://doi.org/10.1002/bmm2.12079","url":null,"abstract":"<p>Nanomedicine-assisted sonodynamic therapy (SDT) has emerged as one of the most promising cancer therapies due to its unique advantages of high penetration, non-radiation, and excellent oxidative stress effect, but has always suffered from the self-protection mechanism and apoptosis resistance characteristics of evolutionarily mutated cancer cells. Regulated cell death (RCD) has received increasing attention in precision cancer treatments because of its significant role in synergistically sensitizing apoptosis and reversing the immunosuppressive microenvironment during SDT nanomedicine-triggered immunogenic cell death. Herein, paradigmatic research of RCD-augmented sonodynamic tumor immunotherapeutics are typically introduced, such as autophagy blockade, ferroptosis targeting, pyroptosis induction, necroptosis initiation, cuproptosis actuation, PANoptosis trigger, and the coordinated anti-tumor mechanisms are discussed in detail. Multiple analysis focusing on the currently unsolved problems and future development prospects of RCD-based SDT nano-oncology medicine are also discussed and prospected to further strengthen and expand the scope of its therapeutic applications.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12079","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMEMatPub Date : 2024-03-01DOI: 10.1002/bmm2.12073
Cun Zhu, Lei Tian, Wei Cheng, Zhongze Gu
{"title":"Bio-inspired photonic crystals: Tailoring the dielectric building blocks to control the light propagation (1/2024)","authors":"Cun Zhu, Lei Tian, Wei Cheng, Zhongze Gu","doi":"10.1002/bmm2.12073","DOIUrl":"https://doi.org/10.1002/bmm2.12073","url":null,"abstract":"<p>Taking advantage of the spatial ordered structures, bio-inspired photonic crystals have drawn tremendous attention in bioassays, sensors, and optical devices. In article number 10.1002/bmm2.12056, Cun Zhu and Lei Tian et al. have comprehensively summarized the recent progress toward bio-inspired photonic crystals, including the origination of vivid structural color in living creatures, and strategies to construct the periodic ordered structures and manipulate the photonic stop band to achieve the control of light propagation.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140015033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}