{"title":"Biomass-Derived Washable Composites for Accelerating the Healing of Infected Wounds (4/2023)","authors":"Fuhang Jiao, Wei Zhao, Wenbo Zhao, Yong Wang, Yuan Deng, Shulong Chang, Junlu Sun, Qing Lou, Lijun Wang, Chong-Xin Shan, Ying Xiao, Lin Dong","doi":"10.1002/bmm2.12062","DOIUrl":"https://doi.org/10.1002/bmm2.12062","url":null,"abstract":"<p>In this article number 10.1002/bmm2.12055, Fuhang Jiao, Wei Zhao and their co-workers developed a biomass-derived wound dressing exploiting the composite of water-soluble fish gelatin (FG) and antibacterial ZnO@silk fibroin (ZSF) microspheres. The ZSF microspheres serve as both germicide and hydrophile components, endowing the composite with excellent antimicrobial capacity and water solubility. The ZSF/FG composite can be easily removed from the wound using excess water, thereby preventing secondary damage. Additionally, the full-thickness skin wound model on infected mice demonstrated efficient wound closure and reduced inflammatory response. The ZSF/FG composite is expected a promising candidate as wound dressing for clinical therapy.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"1 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138558225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMEMatPub Date : 2023-10-24DOI: 10.1002/bmm2.12056
Cun Zhu, Lei Tian, Wei Cheng, Zhongze Gu
{"title":"Bio-inspired photonic crystals: Tailoring the dielectric building blocks to control the light propagation","authors":"Cun Zhu, Lei Tian, Wei Cheng, Zhongze Gu","doi":"10.1002/bmm2.12056","DOIUrl":"10.1002/bmm2.12056","url":null,"abstract":"<p>Photonic crystals have drawn tremendous attention in recent years owing to their unique optical properties and remarkable advantages in various applications such as bioassays, sensors and optical devices. Benefiting from the spatially ordered structures, the flow of visible light can be manipulated by photonic crystals in a controlled manner. In this review, we summarize recent progress toward bio-inspired photonic crystals, including techniques for the construction of spatially ordered structures in diverse dimensions for photonic crystals, and strategies to manipulate the periodicity of the dielectric building blocks to control the light propagation in the presence of external stimuli. We start with the description of structure induced colors in nature with a systematic investigation to reveal the derivation of these colors, followed by a discussion on the design and fabrication of various types of bio-inspired photonic crystals by manipulating the arrangement of dielectric building blocks. We also highlight the stimuli responsive photonic crystals with tunable optical properties and their applications in sensing and color display.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135266175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMEMatPub Date : 2023-10-20DOI: 10.1002/bmm2.12058
Yuhao Geng, Jing Yu
{"title":"Progress in constructing functional coacervate systems using microfluidics","authors":"Yuhao Geng, Jing Yu","doi":"10.1002/bmm2.12058","DOIUrl":"10.1002/bmm2.12058","url":null,"abstract":"<p>Coacervates formed by liquid-liquid phase separation play significant roles in a variety of intracellular and extracellular biological processes. Recently, substantial efforts have been invested in creating protocells using coacervates. Microfluidic technology has rapidly gained prominence in this area due to its capability to construct monodisperse and stable coacervate droplets. This review highlights recent advancements in utilizing microfluidic devices to construct coacervate-core-vesicle (COV) systems. These COV systems can be employed to realize the sequestration and release of biomolecules as well as to control enzymatic reactions within the coacervate systems in a spatiotemporal manner. Lastly, we delve into the current challenges and opportunities related to the development of functional coacervate systems based on microfluidic technology.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135617077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMEMatPub Date : 2023-10-14DOI: 10.1002/bmm2.12057
Lusi Zhang, Bin Huang, Jing Jin, Yan Li, Ning Gu
{"title":"Advances in nanoprobes-based immunoassays","authors":"Lusi Zhang, Bin Huang, Jing Jin, Yan Li, Ning Gu","doi":"10.1002/bmm2.12057","DOIUrl":"10.1002/bmm2.12057","url":null,"abstract":"<p>Immunoassay is a powerful technique that uses highly specific antigen-antibody interactions to detect biochemical targets such as proteins and toxins. As a diagnostic tool, immunoassay is employed in the screening, diagnosis, and prognosis of diseases, which are crucial for the grasp and control of patient conditions in clinical practice. With the rapid development of nanotechnology, immunoassays based on nanoprobes have attracted more and more attention due to the advantages of high sensitivity, specificity, stability, and versatility. These nanoprobes are nanoscale particles that can act as signal carriers or targeting agents for immunoassays. In this paper, we review the recent advances in various types of nanoprobes for immunoassays, such as colloidal gold, quantum dots, magnetic nanoparticles, nanozymes, aggregation-induced emission, and up-conversion nanoparticles. The effect of the nanoprobe construction and synthesis methods on their detection performance deserves to be studied in depth. We also compare their detection ranges and limits in different immunoassay methods, such as lateral flow immunoassays, fluorescent immunoassays, and surface-enhanced Raman scattering immunoassays. Moreover, we discuss the benefits and challenges of nanoprobes in immunoassays and provide insights into their future development. This study aims to offer a comprehensive and critical perspective on the role of nanoprobes in the field of immunoassays.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135766275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomass-derived washable composites for accelerating the healing of infected wounds","authors":"Fuhang Jiao, Wei Zhao, Wenbo Zhao, Yong Wang, Yuan Deng, Shulong Chang, Junlu Sun, Qing Lou, Lijun Wang, Chong-Xin Shan, Ying Xiao, Lin Dong","doi":"10.1002/bmm2.12055","DOIUrl":"10.1002/bmm2.12055","url":null,"abstract":"<p>Advanced sustainable biomedical materials are urgently needed for clinical applications; however, developing biomedical materials with exceptional mechanical and bactericidal properties as well as removable functionalities to reduce unintended secondary injury remains a challenge. Here, we report a biomass-derived composite consisting of water-soluble fish gelatin (FG) and antibacterial ZnO@silk fibroin (ZSF) microspheres for potential application as the wound dressing. The ZSF microspheres are embedded in a FG matrix to realize the stretchable, antibacterial, and removable ZSF/FG composites. By introducing glycerin as the plasticizer, ZSF/FG composites deliver a tensile strength of 4.5 MPa and stretchability of 550%. Acting as both the germicide and hydrophile components, ZSF microspheres endow the composites with excellent antibacterial capacity and water solubility. To prevent secondary injury, the ZSF/FG composites can be easily removed from the wounds by simply exposing them to excess water. Additionally, the ZSF/FG composites exhibit favorable biocompatibility and sustain high cell viability of over 100%. The full-thickness skin wound model on infected mice demonstrated an efficient rate of wound closure and a reduced inflammatory response. The ZSF/FG composite shows promise to hasten the healing of infected wounds and is expected a promising candidate as wound dressing for clinical therapy.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"1 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136212017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biosensing strategies for amyloid-like protein aggregates","authors":"Yuhang Zhou, Shijun Yan, Wanting Dong, Chenyao Wu, Zhen Zhao, Renzhi Wang, Yanhong Duo, Yongzhi Huang, Ding Xu, Cheng Jiang","doi":"10.1002/bmm2.12053","DOIUrl":"10.1002/bmm2.12053","url":null,"abstract":"<p>Protein aggregate species play a pivotal role in the pathology of various degenerative diseases. Their dynamic changes are closely correlated with disease progression, making them promising candidates as diagnostic biomarkers. Given the prevalence of degenerative diseases, growing attention is drawn to develop pragmatic and accessible protein aggregate species detection technology. However, the performance of current detection methods is far from satisfying the requirements of extensive clinical use. In this review, we focus on the design strategies, merits, and potential shortcomings of each class of detection methods. The review is organized into three major parts: native protein sensing, seed amplification, and intricate program, which embody three different but interconnected methodologies. To the best of our knowledge, no systematic review has encompassed the entire workflow, from the molecular level to the apparatus organization. This review emphasizes the feasibility of the methods instead of theoretical detection limitations. We conclude that high selectivity does play a pivotal role, while signal compilation, multilateral profiling, and other patient-oriented strategies (i.e. less invasiveness and assay speed) are also important.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMEMatPub Date : 2023-10-05DOI: 10.1002/bmm2.12049
Hao Liu, Hongjun Zhuang, Ya Wang, Yuen Yee Cheng, Feixiang Chen, Jian Chen, Xinglei Song, Run Zhang, Yanyan Liu, Wenbo Bu
{"title":"Analgesic nanomedicines for the treatment of chronic pain","authors":"Hao Liu, Hongjun Zhuang, Ya Wang, Yuen Yee Cheng, Feixiang Chen, Jian Chen, Xinglei Song, Run Zhang, Yanyan Liu, Wenbo Bu","doi":"10.1002/bmm2.12049","DOIUrl":"10.1002/bmm2.12049","url":null,"abstract":"<p>Chronic pain is a major cause of suffering that often accompanies diseases and therapies, affecting approximately 20% of individuals at some point in their lives. However, current treatment modalities, such as anesthetic and antipyretic analgesics, have limitations in terms of efficacy and side effects. Nanomedical technology offers a promising avenue to overcome these challenges and introduce new therapeutic mechanisms. This article reviews the recent research on nanomedicine analgesics, integrating analyses of neuroplasticity changes in neurons and pathways related to the transition from acute to chronic pain. Furthermore, it explores potential future strategies using nanomaterials, aiming to provide a roadmap for new analgesic development and improved clinical pain management. By leveraging nanotechnology, these approaches hold the potential to revolutionize pain treatment by delivering targeted and effective relief while minimizing side effects.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134973808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMEMatPub Date : 2023-09-29DOI: 10.1002/bmm2.12054
Bo Hou, Xiaogang Liu
{"title":"Stretching boundaries in neurophysiological monitoring","authors":"Bo Hou, Xiaogang Liu","doi":"10.1002/bmm2.12054","DOIUrl":"10.1002/bmm2.12054","url":null,"abstract":"<p>The most prevalent among nervous system tumors significantly jeopardize patient health. For nerve integrity preservation after tumor removal, continuous intraoperative neurophysiological monitoring (CINM) is indispensable during microsurgery. The paper highlights the articles about the development of a system that employs soft and stretchable organic electronic materials for CINM. This innovative system harnesses soft and stretchable organic electronic materials and deploys conductive polymer electrodes with low impedance and modulus. These electrodes facilitate uninterrupted near-field action potential recording during surgery, resulting in enhanced signal-to-noise ratios and reduced invasiveness. Additionally, the system's multiplexing capabilities enable precise nerve localization, even in the absence of anatomical landmarks.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"1 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135246217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMEMatPub Date : 2023-09-28DOI: 10.1002/bmm2.12050
Ping Li, Chao Wang, Jiaoyan Qiu, Fangteng Song, Yuzhen Huang, Yunhong Zhang, Kai Zhang, Hao Ji, Yuanhua Sang, Jonny J. Blaker, Yu Zhang, Lin Han
{"title":"Inhibitory effect of zinc oxide nanorod arrays on breast cancer cells profiled through real-time cytokines screening by a single-cell microfluidic platform (3/2023)","authors":"Ping Li, Chao Wang, Jiaoyan Qiu, Fangteng Song, Yuzhen Huang, Yunhong Zhang, Kai Zhang, Hao Ji, Yuanhua Sang, Jonny J. Blaker, Yu Zhang, Lin Han","doi":"10.1002/bmm2.12050","DOIUrl":"https://doi.org/10.1002/bmm2.12050","url":null,"abstract":"<p>In this article number 10.1002/bmm2.12040, Ping Li, Chao Wang and their co-workers systematically studied the inhibitory effects of zinc oxide nanorods (ZnO NRs) on breast cancer cells. They found that the ZnO NRs inhibited the migration and growth of cell populations, as well as suppressed the secretion of multiple cytokines through a microfluidic platform. Subsequently, they utilized a single-cell chip to explore the cell heterogeneity before and after the inhibition. Based on the different behaviors exhibited by the cells, they reclassified cell clusters and ultimately discovered that ZnO NRs had a weaker inhibitory effect on highly invasive and metastatic cell populations. This offers a reasonable risk analysis for the potential application of ZnO NRs in cancer therapy.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"1 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50147072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMEMatPub Date : 2023-09-28DOI: 10.1002/bmm2.12051
Yihao Huang, Ximing Chen, Jialu Zhang, Wenhai Tian, Siwen Liu, Rachel Chun-Yee Tam, Chaoyong Yang, Yanling Song
{"title":"Aptamer-ased Strategies Against SARS-CoV-2 Viruses (3/2023)","authors":"Yihao Huang, Ximing Chen, Jialu Zhang, Wenhai Tian, Siwen Liu, Rachel Chun-Yee Tam, Chaoyong Yang, Yanling Song","doi":"10.1002/bmm2.12051","DOIUrl":"https://doi.org/10.1002/bmm2.12051","url":null,"abstract":"<p>In article number 10.1002/bmm2.12024, Yihao Huang, Ximing Chen, and their co-workers have comprehensively summarized the aptamers against SARS-CoV-2. They have described the aptamer-based diagnostic and therapeutic tools for SARS-CoV-2. In addition, they have discussed the introduction of nanostructures to improve the properties of aptamers and broaden their applications in sensing, therapeutics, mechanistic studies and vaccine design. Finally, they have provided a perspective on the future development of aptamers against SARS-CoV-2 or other virus.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"1 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50146886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}