Liqiang Zhou, Yangmengfan Chen, Dong Xie, Kun Li, Xinwu Cui, Christoph F. Dietrich, Andreas K. Nüssler, Xuanjun Zhang
{"title":"调节细胞死亡放大声动力抗肿瘤免疫纳米疗法","authors":"Liqiang Zhou, Yangmengfan Chen, Dong Xie, Kun Li, Xinwu Cui, Christoph F. Dietrich, Andreas K. Nüssler, Xuanjun Zhang","doi":"10.1002/bmm2.12079","DOIUrl":null,"url":null,"abstract":"<p>Nanomedicine-assisted sonodynamic therapy (SDT) has emerged as one of the most promising cancer therapies due to its unique advantages of high penetration, non-radiation, and excellent oxidative stress effect, but has always suffered from the self-protection mechanism and apoptosis resistance characteristics of evolutionarily mutated cancer cells. Regulated cell death (RCD) has received increasing attention in precision cancer treatments because of its significant role in synergistically sensitizing apoptosis and reversing the immunosuppressive microenvironment during SDT nanomedicine-triggered immunogenic cell death. Herein, paradigmatic research of RCD-augmented sonodynamic tumor immunotherapeutics are typically introduced, such as autophagy blockade, ferroptosis targeting, pyroptosis induction, necroptosis initiation, cuproptosis actuation, PANoptosis trigger, and the coordinated anti-tumor mechanisms are discussed in detail. Multiple analysis focusing on the currently unsolved problems and future development prospects of RCD-based SDT nano-oncology medicine are also discussed and prospected to further strengthen and expand the scope of its therapeutic applications.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 4","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12079","citationCount":"0","resultStr":"{\"title\":\"Regulated cell death-amplified sonodynamic anti-tumor immune nanotherapeutics\",\"authors\":\"Liqiang Zhou, Yangmengfan Chen, Dong Xie, Kun Li, Xinwu Cui, Christoph F. Dietrich, Andreas K. Nüssler, Xuanjun Zhang\",\"doi\":\"10.1002/bmm2.12079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanomedicine-assisted sonodynamic therapy (SDT) has emerged as one of the most promising cancer therapies due to its unique advantages of high penetration, non-radiation, and excellent oxidative stress effect, but has always suffered from the self-protection mechanism and apoptosis resistance characteristics of evolutionarily mutated cancer cells. Regulated cell death (RCD) has received increasing attention in precision cancer treatments because of its significant role in synergistically sensitizing apoptosis and reversing the immunosuppressive microenvironment during SDT nanomedicine-triggered immunogenic cell death. Herein, paradigmatic research of RCD-augmented sonodynamic tumor immunotherapeutics are typically introduced, such as autophagy blockade, ferroptosis targeting, pyroptosis induction, necroptosis initiation, cuproptosis actuation, PANoptosis trigger, and the coordinated anti-tumor mechanisms are discussed in detail. Multiple analysis focusing on the currently unsolved problems and future development prospects of RCD-based SDT nano-oncology medicine are also discussed and prospected to further strengthen and expand the scope of its therapeutic applications.</p>\",\"PeriodicalId\":100191,\"journal\":{\"name\":\"BMEMat\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12079\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMEMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bmm2.12079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMEMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmm2.12079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanomedicine-assisted sonodynamic therapy (SDT) has emerged as one of the most promising cancer therapies due to its unique advantages of high penetration, non-radiation, and excellent oxidative stress effect, but has always suffered from the self-protection mechanism and apoptosis resistance characteristics of evolutionarily mutated cancer cells. Regulated cell death (RCD) has received increasing attention in precision cancer treatments because of its significant role in synergistically sensitizing apoptosis and reversing the immunosuppressive microenvironment during SDT nanomedicine-triggered immunogenic cell death. Herein, paradigmatic research of RCD-augmented sonodynamic tumor immunotherapeutics are typically introduced, such as autophagy blockade, ferroptosis targeting, pyroptosis induction, necroptosis initiation, cuproptosis actuation, PANoptosis trigger, and the coordinated anti-tumor mechanisms are discussed in detail. Multiple analysis focusing on the currently unsolved problems and future development prospects of RCD-based SDT nano-oncology medicine are also discussed and prospected to further strengthen and expand the scope of its therapeutic applications.