Shaokang Ren , Lei Ren , Biancheng Wei , Yubo Liu , Jianzhong Yang , Jiang Li , Lihua Wang
{"title":"DNA-templated fabrication of metal nanostructures with special shapes","authors":"Shaokang Ren , Lei Ren , Biancheng Wei , Yubo Liu , Jianzhong Yang , Jiang Li , Lihua Wang","doi":"10.1016/j.asems.2024.100133","DOIUrl":"10.1016/j.asems.2024.100133","url":null,"abstract":"<div><div>Metal structures with special shapes at the length scales of electromagnetic waves, particularly visible light (∼10<sup>–</sup><sup>7</sup> m), hold great promise in the development of next-generation electronic/optical devices. However, downscaling the metal structure features to the sub-10 nm scale remains a challenge due to the resolution limitations inherent in conventional top-down microfabrication techniques. In recent years, DNA nanotechnology has garnered significant attention due to its capability to construct nanostructures with programmable shapes at the nanometer scale, which can serve as templates for the fabrication of metal nanostructures. Here, we review the development of DNA-templated metal nanostructures with unique shapes, focusing on their electronic and optical properties and applications. We discuss the advantages and limitations of these strategies and provide an outlook for this research area.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 1","pages":"Article 100133"},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143166053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Wang , Stefen Stangherlin , Nan Cheng , Juewen Liu
{"title":"Non-thiolated spherical nucleic acids for biosensors and assembly of nanomaterials","authors":"Xin Wang , Stefen Stangherlin , Nan Cheng , Juewen Liu","doi":"10.1016/j.asems.2024.100132","DOIUrl":"10.1016/j.asems.2024.100132","url":null,"abstract":"<div><div>Spherical nucleic acids (SNAs) refer to a nanoparticle core decorated with a high density of single-stranded DNA or RNA. SNAs have garnered significant attention for their unique physicochemical properties and advantages in biomedical, nanotechnology and biosensing applications. The preparation of traditional SNAs typically relies on the strong bonding between thiolated DNA and gold nanoparticles (AuNPs) to ensure a high-density and stable DNA attachment. Interestingly, non-thiolated DNA also strongly interacts with gold surfaces through the coordination of its nucleobases, enabling the preparation of cost-effective non-thiolated SNAs. In this review, we introduce the adsorption properties of DNA on AuNPs, followed by a review of the current methods for the synthesis of non-thiolated SNAs and a discussion of their stability based on existing data. The reviewed methods include salt-aging, low-pH, freezing, microwaving, and thermal drying. Most methods rely on a poly-adenine block to anchor onto the surface of AuNPs. Furthermore, two types of non-thiolated SNA products are discussed, which are characterized by their DNA density as a function of the length of the poly-adenine block. Finally, we briefly outline the current applications of SNAs, including biosensing and DNA-directed assembly, and discuss potential future developments.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 1","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qian Chen , Jie Su , Xiaojun Bian, Hongmin Zhang, Shiqi Yang, Juan Yan
{"title":"Utilizing framework nucleic acids for integrated nano-micro interface system in circulating tumor cells (CTCs) detection, cultivation, and single-cell analysis","authors":"Qian Chen , Jie Su , Xiaojun Bian, Hongmin Zhang, Shiqi Yang, Juan Yan","doi":"10.1016/j.asems.2024.100131","DOIUrl":"10.1016/j.asems.2024.100131","url":null,"abstract":"<div><div>The detection and cultivation of circulating tumor cells (CTCs) play a crucial role in monitoring tumor recurrence, metastasis, early disease diagnosis, and assessing the effectiveness of drug treatments. This study specifically focused on investigating human breast cancer cells MCF-7 by utilizing framework nucleic acids (FNAs) as bio-probe scaffold in conjunction with fishbone structures and three-dimensional (3D) microcavity structures within microchannels. These components collectively formed an integrated nano-micro interface system designed for a comprehensive examination of CTC detection and cell culture. The study involved the assessment and comparison of rigid 3D FNAs with distinct side lengths of 7, 13, and 26 bases. This approach not only allowed for precise regulation of the DNA biosensor interface through the manipulation of probe spacing, facilitating optimal probe-cell interactions within the microfluidic channel. Consequently, this approach significantly enhances capture efficiency and lowers the CTC detection limit to 5 cells/mL. Moreover, this research successfully observed cell proliferation and individual cell biological behavior within the 3D microcavity structure. The findings indicated that the overall cell population's proliferation was like that in static culture conditions. Although the proliferation cycle of individual cells was notably extended, cell mobility within the microcavity demonstrated their robust biological activity. These significant outcomes not only offer a practical approach for early tumor detection but also provide a valuable pathway for comprehending mechanisms of tumor development and advancement and guiding personalized treatment strategies effectively.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 2","pages":"Article 100131"},"PeriodicalIF":0.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143600910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rudi Liu , Jiuxing Li , Jimmy Gu , Bruno J. Salena , Yingfu Li
{"title":"Palladium–iridium nanocubes modified with a high-affinity DNA aptamer as paired viral diagnostic and therapeutic tools","authors":"Rudi Liu , Jiuxing Li , Jimmy Gu , Bruno J. Salena , Yingfu Li","doi":"10.1016/j.asems.2024.100125","DOIUrl":"10.1016/j.asems.2024.100125","url":null,"abstract":"<div><div>The COVID-19 pandemic emphasizes the need for the development of molecular tools that can be used as effective diagnostic and therapeutic agents. Herein we investigate the potential of aptamer-dressed nanomaterials both as diagnostics and therapeutics using SARS-CoV-2 as a model. The nanomaterials are based on the palladium-iridium (Pd–Ir) nanocubes modified with monomeric, dimeric or trimeric aptamers that exhibit varying affinities for the spike protein of SARS-CoV-2. These nanomaterials were first examined for diagnostic potential through the creation of a nanozyme-linked aptamer assay (NLAA) that takes advantage of the peroxidase-mimicking activity of Pd–Ir nanocubes. The trimeric aptamer-based NLAA demonstrated a limit of detection (LOD) of 9.3×10<sup>3</sup> cp/mL for pseudoviruses expressing the spike protein of SARS-CoV-2, 172- and 12.9-fold lower than that of the monomeric and dimeric aptamer-based NLAAs, respectively. Upon testing with 60 clinical saliva samples, the trimeric aptamer-based NLAA achieved a specificity of 100% and a sensitivity of 86.7%. The same nanomaterials were also examined for the ability to block viral entry to host cells. The trimeric aptamer-conjugated nanocubes exhibited a superior neutralizing ability, with an IC<sub>50</sub> value of 6.4 pM, 2.7-fold and 10.1-fold lower than that of the dimeric and monomeric aptamer nanocubes. Moreover, the trimeric aptamer-conjugated nanocubes exhibited excellent biostability and biocompatibility. Overall, our study provides a framework for combating future viral pandemics through the development of a paired biosensor and neutralizing agent made of the same aptamer-modified nanomaterial that recognizes an important viral surface protein like the spike protein of SARS-CoV-2.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 2","pages":"Article 100125"},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143705857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Redox-active sp2-c connected metal covalent organic frameworks for selective detection and reductive separation of uranium","authors":"Jin-Lan Liu , Zhi-Hai Peng , Jia-Xin Qi , Cheng-Rong Zhang , Zhen-Wen Zhang , Li Zhang , Ru-Ping Liang , Jian-Ding Qiu","doi":"10.1016/j.asems.2024.100124","DOIUrl":"10.1016/j.asems.2024.100124","url":null,"abstract":"<div><p>It is economically desirable to develop a material that can simultaneously detect and recover uranium. Herein, a C<img>C-bridged two-dimensional metal-covalent organic framework (Cu-BTAN-AO MCOF) was constructed by condensation of metal single crystals with a rigid structure (Cu<sub>3</sub>(PyCA)<sub>3</sub>) and cyano monomers (BTAN) via Knoevenagel reaction for simultaneous detection and adsorption of uranium. The amidoxime group within the pore and the presence of unsaturated Cu(I) in the framework facilitate the adsorption of uranyl ions onto the amidoxime group, leading to fluorescence quenching via the photoinduced electron transfer (PET) mechanism, achieving a detection limit of as low as 167 nM uranyl ions. Furthermore, Cu-BTAN-AO demonstrates exceptional efficiency in capturing uranium from wastewater characterized by rapid kinetics and superior selectivity. It is noteworthy that Cu-BTAN-AO is the first example of simultaneous detection, adsorption and chemical reduction of uranium using metal centers and functional groups in MCOF, indicating that Cu-BTAN-AO has great potential for the detection and recovery of uranium-containing wastewater. This design strategy may also be applicable to advancing sensing and energy materials for other important metal ions.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 4","pages":"Article 100124"},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X24000359/pdfft?md5=cec691343fe9085e13aa062daa21144f&pid=1-s2.0-S2773045X24000359-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liandi Guan , Fang Liu , Cun Zhang , Wei Wang , Jianwei Zhang , Qionglin Liang
{"title":"Porphyrin-based metal-organic frameworks for cancer theranostics","authors":"Liandi Guan , Fang Liu , Cun Zhang , Wei Wang , Jianwei Zhang , Qionglin Liang","doi":"10.1016/j.asems.2024.100123","DOIUrl":"10.1016/j.asems.2024.100123","url":null,"abstract":"<div><div>Theranostics, integrating diagnostic and therapeutic functionalities, have emerged as advanced systems for timely cancer diagnosis and effective treatment. The development of versatile materials suitable for cancer theranostics is intensifying. Porphyrin-based metal-organic frameworks (MOFs) leverage the structural diversity and designability inherent in MOFs, alongside the robust photophysical, catalytic, and biological properties of porphyrins. These materials enhance the solubility and stability of porphyrins and facilitate their stable functionalized assemblies, conferring the potential for multimodal imaging diagnostics and precision therapeutics. In this review, we summarized the potential of porphyrin-based MOFs as cancer theranostics platforms, focusing on recent advancements in porphyrin-based MOFs, and highlighting their functionalized strategies and developments in diagnostic imaging and synergistic therapies. Finally, we proposed the challenges and prospects of these emerging materials in cancer theranostics.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 4","pages":"Article 100123"},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X24000347/pdfft?md5=a7f73b22591dd7ae6783fa296693b3ef&pid=1-s2.0-S2773045X24000347-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guiru Zhang , Xianxian Qin , Chengwei Deng , Wen-Bin Cai , Kun Jiang
{"title":"Corrigendum to “Electrocatalytic CO2 and HCOOH interconversion on Pd-based catalysts” [Adv Sensor Energy Mater 1 (2022) 100007]","authors":"Guiru Zhang , Xianxian Qin , Chengwei Deng , Wen-Bin Cai , Kun Jiang","doi":"10.1016/j.asems.2024.100122","DOIUrl":"10.1016/j.asems.2024.100122","url":null,"abstract":"","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 4","pages":"Article 100122"},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X24000335/pdfft?md5=5509b6d405cd84bb9a8506df432e551d&pid=1-s2.0-S2773045X24000335-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunxin Xia , Hemei Cheng , Xinwei Hou , Yu Zhang , Xinchi Zhou , Qinglong Yan , Shuting Cao
{"title":"Spherical nucleic acids for biomedical applications","authors":"Chunxin Xia , Hemei Cheng , Xinwei Hou , Yu Zhang , Xinchi Zhou , Qinglong Yan , Shuting Cao","doi":"10.1016/j.asems.2024.100117","DOIUrl":"10.1016/j.asems.2024.100117","url":null,"abstract":"<div><p>Spherical nucleic acids (SNAs) are a 3D spherical nanostructure composed of highly oriented, dense layers of oligonucleotides conjugated to a hollow or solid core. This structure allows SNAs to show resistance to nuclease degradation, enter into nearly all cells without transfection agents and enable precise interactions with target molecules. Based on superior biological properties, SNAs can be tailored for diverse biological applications, rendering them a flexible and biosafe tool for biological applications as well as an enabling platform for therapy. In this review, we mainly discuss the structure and conjugation mode of SNAs and focus on recent advances in their applications, such as biomedical detection, imaging, and drug delivery. Finally, the remaining challenges and future directions of SNAs are also discussed and proposed.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 4","pages":"Article 100117"},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X24000281/pdfft?md5=922efe7325a759155f5fd01b2b6e8d27&pid=1-s2.0-S2773045X24000281-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ligand-free Cs2PdBr6 perovskite microcrystals with narrow bandgap and high photoelectrochemical performance in aqueous solution","authors":"Yaling Chen , Guanying Luo , Luyao Xu, Yu Yang, Yunzhong Xu, Jiahui Yu, Wei Chen, Huaping Peng","doi":"10.1016/j.asems.2024.100116","DOIUrl":"https://doi.org/10.1016/j.asems.2024.100116","url":null,"abstract":"<div><p>The exploration of efficient lead-free perovskite photoelectric active materials to develop high-performance photoelectrochemical (PEC) systems in aqueous solution is crucial to expand their PEC applications. Herein, we successfully constructed a high-performance PEC platform using ligand-free perovskite Cs<sub>2</sub>PdBr<sub>6</sub> microcrystals (MCs) as the photoactive substance. The Cs<sub>2</sub>PdBr<sub>6</sub> MCs showed narrow bandgap, wide absorption range, high electronic mobility and good stability in aqueous solutions. Particularly, the Cs<sub>2</sub>PdBr<sub>6</sub> MCs exhibited an excellent photoresponse, the photocurrent density could reach as high as 98 μA/cm<sup>2</sup> under 10.18 mW/cm<sup>2</sup> light irradiation in the absence of other electron acceptors. In addition of the extremely wide range of response wavelength, wide pH range and accelerated interfacial carrier transfer, the Cs<sub>2</sub>PdBr<sub>6</sub> MCs demonstrated the significant potential of photocathode active material for applications in PEC sensors and optoelectronic devices. Therefore, this work indicates that Cs<sub>2</sub>PdBr<sub>6</sub> MCs design is a highly efficient way to solve the intrinsic issues of perovskite material, predicting a promising strategy for high performance PEC application in aqueous ambience.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 3","pages":"Article 100116"},"PeriodicalIF":0.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X2400027X/pdfft?md5=16b357d455e14e27bc7d7fbdd4778f39&pid=1-s2.0-S2773045X2400027X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongyan Yang , Zeyu Ma , Dan Zhang , Yi Wang , Lei Li , Guobao Zhou
{"title":"Label-free, background-free detection of nucleic acid with immobilization-free heterogeneous biosensor and one-pot hybridization chain reaction amplification","authors":"Hongyan Yang , Zeyu Ma , Dan Zhang , Yi Wang , Lei Li , Guobao Zhou","doi":"10.1016/j.asems.2024.100115","DOIUrl":"https://doi.org/10.1016/j.asems.2024.100115","url":null,"abstract":"<div><p>Although immobilization-free and label-free electrochemical DNA (E-DNA) biosensors have engaged tremendous interest due to their superior properties, such as easy operation, time-saving and cost-saving, most of them are fabricated in homogeneous modes and usually produce high background current. In the present work, we proposed a new immobilization-free and label-free heterogeneous E-DNA assay based on a dual-blocker-aided multibranched hybridization chain reaction (HCR) for one-pot nucleic acid detection with zero background. The target nucleic acid triggers the HCR involving cascaded hybridization between two metastable hairpins, resulting in the generation of HCR products with multibranched arms, which can be captured onto the electrode via π-π stacking interactions between multibranched arms and reduced graphene oxide (rGO). Prior to the incubation process with an electrode, two blockers are designed to prohibit the nonspecific absorption of unreacted hairpin probes. Thus, an immobilization-free and label-free heterogeneous electrochemical assay for one-pot nucleic acid detection with zero background is readily realized. This strategy also presents additional merits of simplicity and cheap cost, since probe immobilization, signal tag labeling, and multiple incubation processes are avoided. Therefore, the as-proposed effective and versatile biosensor has great potential to be applied in nucleic acid-related practical biosensing.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 3","pages":"Article 100115"},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X24000268/pdfft?md5=147e14398ef2fef9bc165b940156fc9a&pid=1-s2.0-S2773045X24000268-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}