Zhong-Hui Sun , Qiu-Ling Huang , Zhan-Chao Li , Wei Zheng , Yan Mao , Dong-Xue Han , Gang Huang
{"title":"Wearable electrochemical sensor for real-time sweat monitoring powered by Li–S battery: Rapid ion-electron transduction driven by high-entropy Prussian blue analogues","authors":"Zhong-Hui Sun , Qiu-Ling Huang , Zhan-Chao Li , Wei Zheng , Yan Mao , Dong-Xue Han , Gang Huang","doi":"10.1016/j.asems.2025.100150","DOIUrl":"10.1016/j.asems.2025.100150","url":null,"abstract":"<div><div>The portable electrochemical sensors couple with high-energy density batteries lay the foundation for intelligent electronic devices capable of real-time and long-term monitoring of signals at the molecular level. Currently, high-entropy materials play a crucial role in advanced energy storage system and electroanalytical chemistry due to their powerful multi active centers and lattice strain fields. Herein, we propose high-entropy Prussian blue analogues (HE-PBA) as a bidirectional catalyst to reduce the activation energy of sulfur redox reaction, alleviate polysulfides shuttle, and inhibit lithium dendritic growth in Li–S battery. Furthermore, benefited from hierarchical HE-PBA with multiple redox active sites, superior ion-selective effect, high ionic/electrical conductivity and hydrophobicity, thus contributing to splendid ion-electron transducer capability as solid contact layer in wearable potentiometric electrochemical sensors. As a result, an advanced wearable electronic device integrates LSB as a power source with potentiometric electrochemical sensor unit equipped with ion selective electrode, enabling real-time monitoring of K<sup>+</sup> concentration in sweat metabolite during outdoor exercise. In a word, this work demonstrates a tremendous potential of designing multifunctional electrode materials for advanced energy storage and electrochemical sensing applications through high entropy strategies.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 2","pages":"Article 100150"},"PeriodicalIF":0.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143828520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huang Dai , Huilin Hu , Zhiyong Gong , Jing Shu , Jiahua Wang , Xiaodan Liu , Fuwei Pi , Qiao Wang , Shuo Duan , Yingli Wang
{"title":"Corrigendum to “Needle−tip effect promoted flexible electrochemical sensor for detecting chloride ions in food by in−situ deposited silver dendrimers” [Adv Sensor Energy Mater 3 (2024) 100100]","authors":"Huang Dai , Huilin Hu , Zhiyong Gong , Jing Shu , Jiahua Wang , Xiaodan Liu , Fuwei Pi , Qiao Wang , Shuo Duan , Yingli Wang","doi":"10.1016/j.asems.2024.100130","DOIUrl":"10.1016/j.asems.2024.100130","url":null,"abstract":"","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 2","pages":"Article 100130"},"PeriodicalIF":0.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143580021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiahao Shen , Junli Liu , Yunxiao Yi , Chenhui He , Hengyu Liu , Linrong Shi , Jin Liu , Pingen Shi , Hui Liu , Xuanmeng He , Yi Feng , Xingjian Song , Shaowei Chen
{"title":"Enhanced multienzyme-like and antibacterial activity by copper atomically dispersed into molybdenum disulfide for accelerated wound healing","authors":"Jiahao Shen , Junli Liu , Yunxiao Yi , Chenhui He , Hengyu Liu , Linrong Shi , Jin Liu , Pingen Shi , Hui Liu , Xuanmeng He , Yi Feng , Xingjian Song , Shaowei Chen","doi":"10.1016/j.asems.2025.100148","DOIUrl":"10.1016/j.asems.2025.100148","url":null,"abstract":"<div><div>Bacterial and viral infections have been a global challenge, exacerbated by rampant antibiotic overuse. It is thus of fundamental and technological significance to develop effective antibacterial agents. Herein, copper is atomically dispersed into a MoS<sub>2</sub> matrix via the chelation of ammonium tetrathiomolybdate [(NH<sub>4</sub>)<sub>2</sub>MoS<sub>4</sub>]. Meticulous control of the copper content enables uniform atomic dispersion and optimizes active site accessibility, both critical factors for a range of catalytic activities that mimic native enzymes like peroxidase, superoxide dismutase and glutathione oxidase. Among the series, the Cu/MoS<sub>2</sub>-3 sample, with a Cu:Mo molar ratio of ca. 0.3, exhibits the best activity, with a maximum rate of 14.3 × 10<sup>−18</sup> M s<sup>–</sup><sup>1</sup> in the peroxidase-like reaction with H<sub>2</sub>O<sub>2</sub> and rate constant of 2.56 × 10<sup>−3</sup> s<sup>−1</sup> that are at least one order of magnitude greater than those of MoS<sub>2</sub>. These unique properties endow the resultant Cu/MoS<sub>2</sub> composites with a remarkable antimicrobial activity. Experimentally, with the addition of 1 mM H<sub>2</sub>O<sub>2</sub>, 99% of Gram-positive <em>Staphylococcus aureus</em> and Gram-negative <em>Escherichia coli</em> can be eliminated within 10 min by Cu/MoS<sub>2</sub> (50 μg/mL). Such a peroxidase-like activity of Cu/MoS<sub>2</sub> can facilitate wound healing and inflammation reduction in a <em>Staphylococcus aureus</em> infected wound model. Results from this study highlight the unique significance of atomic dispersion in the structural engineering of high-performance bactericidal agents for biomedical applications.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 2","pages":"Article 100148"},"PeriodicalIF":0.0,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143792342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdulla Alsaad, Iftikhar Ahmad, Adel Aawan, Ahmed M. Abdelrhman, Wajid Khan
{"title":"Design, development and testing of a wearable hybrid energy harvester for sustainable gadgets","authors":"Abdulla Alsaad, Iftikhar Ahmad, Adel Aawan, Ahmed M. Abdelrhman, Wajid Khan","doi":"10.1016/j.asems.2025.100137","DOIUrl":"10.1016/j.asems.2025.100137","url":null,"abstract":"<div><div>This research paper presents the design, development and testing of a novel wearable hybrid energy harvester (WH-EH) aimed at powering sustainable gadgets. By harnessing energy using both electromagnetic and piezoelectric transduction mechanisms to capture ambient mechanical energy from human body motion, this device offers a versatile solution to the growing demand for portable and renewable energy. The paper details the integration of both mechanisms into a single device that fits in human shoes and the practical implications of deploying such technology in everyday gadgets. The WH-EH comprised of 3D printed frame, a cantilever beam made up of stainless steel, two permanent neodymium magnets residing at the tip of the cantilever beam, two printed circuit board-based micro planar coils that were fixed to the top and bottom of the 3D printed frame. Through rigorous testing, the WH-EH has demonstrated significant potential of producing maximum a power of 577 μW which can help in reducing the reliance on traditional power sources and advancing the frontier of wearable technology. Energy harvesters like WH-EH are pivotal in advancing the sustainability of wearable gadgets, diminishing the dependence on traditional battery sources. These innovations not only strengthen the longevity and eco-friendliness of personal electronics but also align with global sustainable development goals, particularly in the energy and environmental sectors. The progression of such energy harvesters marks a crucial milestone in the ongoing integration of renewable energy practices into daily electrical applications.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 1","pages":"Article 100137"},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143454445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yitian Tang , Qunmei Zhang , Hongchang Yuan , Xiaoyin Wang , Liuyang Xu , Guoqiang Wang , Min Zhang , Ping Lu , Hua Zhong , Yihan Wang
{"title":"Recent applications and challenges of inorganic nanomaterial-based biosensing devices for detecting nucleic acid biomarkers","authors":"Yitian Tang , Qunmei Zhang , Hongchang Yuan , Xiaoyin Wang , Liuyang Xu , Guoqiang Wang , Min Zhang , Ping Lu , Hua Zhong , Yihan Wang","doi":"10.1016/j.asems.2025.100136","DOIUrl":"10.1016/j.asems.2025.100136","url":null,"abstract":"<div><div>Nucleic acids are specific biomolecules for clinically relevant diseases. Highly sensitive detection of these low-abundance biomolecules is essential for understanding their functions in disease diagnosis, prognosis, and predicting treatment effects. As a traditional detection method, polymerase chain reaction (PCR) has high sensitivity. However, it is time-consuming and requires complex experimental equipment, which limits its application in on-site rapid detection. To address these issues, biosensing devices based on inorganic nanomaterials (INMs) have been widely used to detect nucleic acid biomarkers in recent years. Compared with organic or polymer nanomaterials, INMs have unique physical and chemical properties that produce synergistic effects regarding biocompatibility, electrical conductivity, and high specific surface area. It can also amplify the signal by increasing the signal tag loading, making it ideal for biosensing devices. This article reviews the latest progress of INMs (metal nanoparticles, metal oxide nanomaterials, carbon-based nanomaterials, quantum dots, magnetic nanomaterials) in nucleic acid detection and introduces the definition, specific effects, and synthesis of INMs. Subsequently, the applications of INMs integrated into various sensing platforms were discussed, including electrochemical biosensors, electrochemiluminescence (ECL) biosensors, photoelectrochemical (PEC) biosensors, and self-powered biosensor and point-of-care testing (POCT) to achieve highly sensitive and specific detection of nucleic acid molecules such as DNA and RNA. Finally, the opportunities and challenges faced by biosensing devices based on INMs in the future development of nucleic acid detection are discussed and prospected.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 1","pages":"Article 100136"},"PeriodicalIF":0.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143444265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Yang , Yushi Xie , Longjiao Zhu , Ran Wang , Jie Zheng , Wentao Xu
{"title":"Aptamer-based biosensors for biogenic amines detection","authors":"Min Yang , Yushi Xie , Longjiao Zhu , Ran Wang , Jie Zheng , Wentao Xu","doi":"10.1016/j.asems.2025.100135","DOIUrl":"10.1016/j.asems.2025.100135","url":null,"abstract":"<div><div>Biogenic amines (BAs) are a class of small nitrogen-containing organic compounds commonly found in various foods and are one of the common metabolic by-products in the process of food spoilage. When consumed in excessive amounts by the human body, BAs can cause a range of adverse reactions such as difficulty in breathing and palpitations, posing a serious threat to life and health. Moreover, the content of BAs is closely related to the degree of food spoilage, making them an important indicator for measuring food quality and freshness. Therefore, accurate detection of BAs is particularly important. Aptamer biosensors are becoming more and more important in the field of biosensing and show great potential. In this review, we first systematically summarized the structural characteristics, formation mechanism and potential toxicity of BAs. Then, the screening strategies and methods of biogenic amine aptamers were discussed. On this basis, we focus on the latest progress in the field of aptamer sensor technology for BAs detection in food and divide these technologies into four categories according to the detection principle: colorimetric analysis, fluorescence detection, surface-enhanced Raman spectroscopy (SERS) analysis and electrochemical detection. Finally, the future development direction and current challenges of biogenic amine detection strategies are introduced.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 2","pages":"Article 100135"},"PeriodicalIF":0.0,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143600909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ingemar Petermann , Magnus Lindblom , Carola Sterner , Greger Gregard , Stefan Karlsson
{"title":"Optical fiber sensor solutions for in-situ transmittance control of electrochromic glazing","authors":"Ingemar Petermann , Magnus Lindblom , Carola Sterner , Greger Gregard , Stefan Karlsson","doi":"10.1016/j.asems.2025.100134","DOIUrl":"10.1016/j.asems.2025.100134","url":null,"abstract":"<div><div>Windows are essential to let natural daylight into our buildings. Smart and dynamic glazing is an important technology for achieving sustainable and energy-efficient buildings with good indoor environment by reducing the need for air-conditioning. Electrochromic glazing is the commercial state-of-the-art for smart and dynamic glazing. In principle electrochromic glazing works like a thin film battery, whose lifetime is enhanced if the combination of elevated temperature and a high state-of-charge, or low light transmittance, are avoided. Therefore, a direct transmittance measurement is desirable. In this study, we have evaluated four different methods using optical fibers, whereof two methods were found to work well, both in initial testing and when compared to reference transmittance cycling measurements. Both methods relied on light from a light emitting diode, at 810 nm wavelength, that was propagated either through the electrochromic foil or along it. The latter shows most potential to be implemented in a manufacturing process of smart glazing.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 1","pages":"Article 100134"},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143420978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaokang Ren , Lei Ren , Biancheng Wei , Yubo Liu , Jianzhong Yang , Jiang Li , Lihua Wang
{"title":"DNA-templated fabrication of metal nanostructures with special shapes","authors":"Shaokang Ren , Lei Ren , Biancheng Wei , Yubo Liu , Jianzhong Yang , Jiang Li , Lihua Wang","doi":"10.1016/j.asems.2024.100133","DOIUrl":"10.1016/j.asems.2024.100133","url":null,"abstract":"<div><div>Metal structures with special shapes at the length scales of electromagnetic waves, particularly visible light (∼10<sup>–</sup><sup>7</sup> m), hold great promise in the development of next-generation electronic/optical devices. However, downscaling the metal structure features to the sub-10 nm scale remains a challenge due to the resolution limitations inherent in conventional top-down microfabrication techniques. In recent years, DNA nanotechnology has garnered significant attention due to its capability to construct nanostructures with programmable shapes at the nanometer scale, which can serve as templates for the fabrication of metal nanostructures. Here, we review the development of DNA-templated metal nanostructures with unique shapes, focusing on their electronic and optical properties and applications. We discuss the advantages and limitations of these strategies and provide an outlook for this research area.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 1","pages":"Article 100133"},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143166053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Wang , Stefen Stangherlin , Nan Cheng , Juewen Liu
{"title":"Non-thiolated spherical nucleic acids for biosensors and assembly of nanomaterials","authors":"Xin Wang , Stefen Stangherlin , Nan Cheng , Juewen Liu","doi":"10.1016/j.asems.2024.100132","DOIUrl":"10.1016/j.asems.2024.100132","url":null,"abstract":"<div><div>Spherical nucleic acids (SNAs) refer to a nanoparticle core decorated with a high density of single-stranded DNA or RNA. SNAs have garnered significant attention for their unique physicochemical properties and advantages in biomedical, nanotechnology and biosensing applications. The preparation of traditional SNAs typically relies on the strong bonding between thiolated DNA and gold nanoparticles (AuNPs) to ensure a high-density and stable DNA attachment. Interestingly, non-thiolated DNA also strongly interacts with gold surfaces through the coordination of its nucleobases, enabling the preparation of cost-effective non-thiolated SNAs. In this review, we introduce the adsorption properties of DNA on AuNPs, followed by a review of the current methods for the synthesis of non-thiolated SNAs and a discussion of their stability based on existing data. The reviewed methods include salt-aging, low-pH, freezing, microwaving, and thermal drying. Most methods rely on a poly-adenine block to anchor onto the surface of AuNPs. Furthermore, two types of non-thiolated SNA products are discussed, which are characterized by their DNA density as a function of the length of the poly-adenine block. Finally, we briefly outline the current applications of SNAs, including biosensing and DNA-directed assembly, and discuss potential future developments.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 1","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qian Chen , Jie Su , Xiaojun Bian, Hongmin Zhang, Shiqi Yang, Juan Yan
{"title":"Utilizing framework nucleic acids for integrated nano-micro interface system in circulating tumor cells (CTCs) detection, cultivation, and single-cell analysis","authors":"Qian Chen , Jie Su , Xiaojun Bian, Hongmin Zhang, Shiqi Yang, Juan Yan","doi":"10.1016/j.asems.2024.100131","DOIUrl":"10.1016/j.asems.2024.100131","url":null,"abstract":"<div><div>The detection and cultivation of circulating tumor cells (CTCs) play a crucial role in monitoring tumor recurrence, metastasis, early disease diagnosis, and assessing the effectiveness of drug treatments. This study specifically focused on investigating human breast cancer cells MCF-7 by utilizing framework nucleic acids (FNAs) as bio-probe scaffold in conjunction with fishbone structures and three-dimensional (3D) microcavity structures within microchannels. These components collectively formed an integrated nano-micro interface system designed for a comprehensive examination of CTC detection and cell culture. The study involved the assessment and comparison of rigid 3D FNAs with distinct side lengths of 7, 13, and 26 bases. This approach not only allowed for precise regulation of the DNA biosensor interface through the manipulation of probe spacing, facilitating optimal probe-cell interactions within the microfluidic channel. Consequently, this approach significantly enhances capture efficiency and lowers the CTC detection limit to 5 cells/mL. Moreover, this research successfully observed cell proliferation and individual cell biological behavior within the 3D microcavity structure. The findings indicated that the overall cell population's proliferation was like that in static culture conditions. Although the proliferation cycle of individual cells was notably extended, cell mobility within the microcavity demonstrated their robust biological activity. These significant outcomes not only offer a practical approach for early tumor detection but also provide a valuable pathway for comprehending mechanisms of tumor development and advancement and guiding personalized treatment strategies effectively.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 2","pages":"Article 100131"},"PeriodicalIF":0.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143600910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}