Jiahao Shen , Junli Liu , Yunxiao Yi , Chenhui He , Hengyu Liu , Linrong Shi , Jin Liu , Pingen Shi , Hui Liu , Xuanmeng He , Yi Feng , Xingjian Song , Shaowei Chen
{"title":"铜原子分散到二硫化钼中加速伤口愈合,增强了多酶样和抗菌活性","authors":"Jiahao Shen , Junli Liu , Yunxiao Yi , Chenhui He , Hengyu Liu , Linrong Shi , Jin Liu , Pingen Shi , Hui Liu , Xuanmeng He , Yi Feng , Xingjian Song , Shaowei Chen","doi":"10.1016/j.asems.2025.100148","DOIUrl":null,"url":null,"abstract":"<div><div>Bacterial and viral infections have been a global challenge, exacerbated by rampant antibiotic overuse. It is thus of fundamental and technological significance to develop effective antibacterial agents. Herein, copper is atomically dispersed into a MoS<sub>2</sub> matrix via the chelation of ammonium tetrathiomolybdate [(NH<sub>4</sub>)<sub>2</sub>MoS<sub>4</sub>]. Meticulous control of the copper content enables uniform atomic dispersion and optimizes active site accessibility, both critical factors for a range of catalytic activities that mimic native enzymes like peroxidase, superoxide dismutase and glutathione oxidase. Among the series, the Cu/MoS<sub>2</sub>-3 sample, with a Cu:Mo molar ratio of ca. 0.3, exhibits the best activity, with a maximum rate of 14.3 × 10<sup>−18</sup> M s<sup>–</sup><sup>1</sup> in the peroxidase-like reaction with H<sub>2</sub>O<sub>2</sub> and rate constant of 2.56 × 10<sup>−3</sup> s<sup>−1</sup> that are at least one order of magnitude greater than those of MoS<sub>2</sub>. These unique properties endow the resultant Cu/MoS<sub>2</sub> composites with a remarkable antimicrobial activity. Experimentally, with the addition of 1 mM H<sub>2</sub>O<sub>2</sub>, 99% of Gram-positive <em>Staphylococcus aureus</em> and Gram-negative <em>Escherichia coli</em> can be eliminated within 10 min by Cu/MoS<sub>2</sub> (50 μg/mL). Such a peroxidase-like activity of Cu/MoS<sub>2</sub> can facilitate wound healing and inflammation reduction in a <em>Staphylococcus aureus</em> infected wound model. Results from this study highlight the unique significance of atomic dispersion in the structural engineering of high-performance bactericidal agents for biomedical applications.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"4 2","pages":"Article 100148"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced multienzyme-like and antibacterial activity by copper atomically dispersed into molybdenum disulfide for accelerated wound healing\",\"authors\":\"Jiahao Shen , Junli Liu , Yunxiao Yi , Chenhui He , Hengyu Liu , Linrong Shi , Jin Liu , Pingen Shi , Hui Liu , Xuanmeng He , Yi Feng , Xingjian Song , Shaowei Chen\",\"doi\":\"10.1016/j.asems.2025.100148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bacterial and viral infections have been a global challenge, exacerbated by rampant antibiotic overuse. It is thus of fundamental and technological significance to develop effective antibacterial agents. Herein, copper is atomically dispersed into a MoS<sub>2</sub> matrix via the chelation of ammonium tetrathiomolybdate [(NH<sub>4</sub>)<sub>2</sub>MoS<sub>4</sub>]. Meticulous control of the copper content enables uniform atomic dispersion and optimizes active site accessibility, both critical factors for a range of catalytic activities that mimic native enzymes like peroxidase, superoxide dismutase and glutathione oxidase. Among the series, the Cu/MoS<sub>2</sub>-3 sample, with a Cu:Mo molar ratio of ca. 0.3, exhibits the best activity, with a maximum rate of 14.3 × 10<sup>−18</sup> M s<sup>–</sup><sup>1</sup> in the peroxidase-like reaction with H<sub>2</sub>O<sub>2</sub> and rate constant of 2.56 × 10<sup>−3</sup> s<sup>−1</sup> that are at least one order of magnitude greater than those of MoS<sub>2</sub>. These unique properties endow the resultant Cu/MoS<sub>2</sub> composites with a remarkable antimicrobial activity. Experimentally, with the addition of 1 mM H<sub>2</sub>O<sub>2</sub>, 99% of Gram-positive <em>Staphylococcus aureus</em> and Gram-negative <em>Escherichia coli</em> can be eliminated within 10 min by Cu/MoS<sub>2</sub> (50 μg/mL). Such a peroxidase-like activity of Cu/MoS<sub>2</sub> can facilitate wound healing and inflammation reduction in a <em>Staphylococcus aureus</em> infected wound model. Results from this study highlight the unique significance of atomic dispersion in the structural engineering of high-performance bactericidal agents for biomedical applications.</div></div>\",\"PeriodicalId\":100036,\"journal\":{\"name\":\"Advanced Sensor and Energy Materials\",\"volume\":\"4 2\",\"pages\":\"Article 100148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor and Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773045X25000159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X25000159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
细菌和病毒感染一直是全球性的挑战,抗生素的过度使用加剧了这一挑战。因此,开发有效的抗菌药物具有重要的基础和技术意义。在这里,铜通过四硫钼酸铵[(NH4)2MoS4]的螯合作用被原子分散到MoS2基质中。对铜含量的精细控制可以实现均匀的原子分散和优化活性位点的可达性,这两个因素都是模拟天然酶(如过氧化物酶、超氧化物歧化酶和谷胱甘肽氧化酶)的催化活性的关键因素。其中Cu/MoS2-3样品表现出最好的活性,Cu:Mo摩尔比约为0.3,在与H2O2的类过氧化物酶反应中,最大速率为14.3 × 10−18 M s - 1,速率常数为2.56 × 10−3 s - 1,比MoS2的速率常数至少大一个数量级。这些独特的性质使Cu/MoS2复合材料具有显著的抗菌活性。实验表明,在加入1 mM H2O2的条件下,铜/MoS2 (50 μg/mL)在10 min内可杀灭99%的革兰氏阳性金黄色葡萄球菌和革兰氏阴性大肠杆菌。在金黄色葡萄球菌感染的伤口模型中,Cu/MoS2的过氧化物酶样活性可以促进伤口愈合和炎症减轻。这一研究结果突出了原子分散在高性能生物医学杀菌剂结构工程中的独特意义。
Enhanced multienzyme-like and antibacterial activity by copper atomically dispersed into molybdenum disulfide for accelerated wound healing
Bacterial and viral infections have been a global challenge, exacerbated by rampant antibiotic overuse. It is thus of fundamental and technological significance to develop effective antibacterial agents. Herein, copper is atomically dispersed into a MoS2 matrix via the chelation of ammonium tetrathiomolybdate [(NH4)2MoS4]. Meticulous control of the copper content enables uniform atomic dispersion and optimizes active site accessibility, both critical factors for a range of catalytic activities that mimic native enzymes like peroxidase, superoxide dismutase and glutathione oxidase. Among the series, the Cu/MoS2-3 sample, with a Cu:Mo molar ratio of ca. 0.3, exhibits the best activity, with a maximum rate of 14.3 × 10−18 M s–1 in the peroxidase-like reaction with H2O2 and rate constant of 2.56 × 10−3 s−1 that are at least one order of magnitude greater than those of MoS2. These unique properties endow the resultant Cu/MoS2 composites with a remarkable antimicrobial activity. Experimentally, with the addition of 1 mM H2O2, 99% of Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli can be eliminated within 10 min by Cu/MoS2 (50 μg/mL). Such a peroxidase-like activity of Cu/MoS2 can facilitate wound healing and inflammation reduction in a Staphylococcus aureus infected wound model. Results from this study highlight the unique significance of atomic dispersion in the structural engineering of high-performance bactericidal agents for biomedical applications.