Label-free, background-free detection of nucleic acid with immobilization-free heterogeneous biosensor and one-pot hybridization chain reaction amplification

Hongyan Yang , Zeyu Ma , Dan Zhang , Yi Wang , Lei Li , Guobao Zhou
{"title":"Label-free, background-free detection of nucleic acid with immobilization-free heterogeneous biosensor and one-pot hybridization chain reaction amplification","authors":"Hongyan Yang ,&nbsp;Zeyu Ma ,&nbsp;Dan Zhang ,&nbsp;Yi Wang ,&nbsp;Lei Li ,&nbsp;Guobao Zhou","doi":"10.1016/j.asems.2024.100115","DOIUrl":null,"url":null,"abstract":"<div><p>Although immobilization-free and label-free electrochemical DNA (E-DNA) biosensors have engaged tremendous interest due to their superior properties, such as easy operation, time-saving and cost-saving, most of them are fabricated in homogeneous modes and usually produce high background current. In the present work, we proposed a new immobilization-free and label-free heterogeneous E-DNA assay based on a dual-blocker-aided multibranched hybridization chain reaction (HCR) for one-pot nucleic acid detection with zero background. The target nucleic acid triggers the HCR involving cascaded hybridization between two metastable hairpins, resulting in the generation of HCR products with multibranched arms, which can be captured onto the electrode via π-π stacking interactions between multibranched arms and reduced graphene oxide (rGO). Prior to the incubation process with an electrode, two blockers are designed to prohibit the nonspecific absorption of unreacted hairpin probes. Thus, an immobilization-free and label-free heterogeneous electrochemical assay for one-pot nucleic acid detection with zero background is readily realized. This strategy also presents additional merits of simplicity and cheap cost, since probe immobilization, signal tag labeling, and multiple incubation processes are avoided. Therefore, the as-proposed effective and versatile biosensor has great potential to be applied in nucleic acid-related practical biosensing.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 3","pages":"Article 100115"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X24000268/pdfft?md5=147e14398ef2fef9bc165b940156fc9a&pid=1-s2.0-S2773045X24000268-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X24000268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although immobilization-free and label-free electrochemical DNA (E-DNA) biosensors have engaged tremendous interest due to their superior properties, such as easy operation, time-saving and cost-saving, most of them are fabricated in homogeneous modes and usually produce high background current. In the present work, we proposed a new immobilization-free and label-free heterogeneous E-DNA assay based on a dual-blocker-aided multibranched hybridization chain reaction (HCR) for one-pot nucleic acid detection with zero background. The target nucleic acid triggers the HCR involving cascaded hybridization between two metastable hairpins, resulting in the generation of HCR products with multibranched arms, which can be captured onto the electrode via π-π stacking interactions between multibranched arms and reduced graphene oxide (rGO). Prior to the incubation process with an electrode, two blockers are designed to prohibit the nonspecific absorption of unreacted hairpin probes. Thus, an immobilization-free and label-free heterogeneous electrochemical assay for one-pot nucleic acid detection with zero background is readily realized. This strategy also presents additional merits of simplicity and cheap cost, since probe immobilization, signal tag labeling, and multiple incubation processes are avoided. Therefore, the as-proposed effective and versatile biosensor has great potential to be applied in nucleic acid-related practical biosensing.

利用无固定化异质生物传感器和单锅杂交链反应扩增技术进行无标记、无背景的核酸检测
虽然无固定化和无标记的电化学 DNA(E-DNA)生物传感器因其操作简便、省时、省钱等优越性能而备受关注,但它们大多采用均相模式制造,通常会产生较高的背景电流。在本研究中,我们提出了一种基于双阻断剂辅助多分支杂交链反应(HCR)的新型免固定、免标记异构 E-DNA 检测方法,可实现零背景的核酸检测。目标核酸触发的 HCR 涉及两个可转移发夹之间的级联杂交,从而产生具有多分支臂的 HCR 产物,这些产物可通过多分支臂与还原氧化石墨烯(rGO)之间的 π-π 堆叠相互作用被捕获到电极上。在与电极孵育之前,设计了两种阻断剂,以禁止未反应发夹探针的非特异性吸收。这样,一种无固定、无标记的异质电化学分析法就很容易实现了,它可以实现零背景的单次核酸检测。由于避免了探针固定、信号标签标记和多重孵育过程,这一策略还具有操作简单、成本低廉等优点。因此,这种高效、多功能的生物传感器在核酸相关的实用生物传感领域具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信