Cell metabolism最新文献

筛选
英文 中文
Dual impacts of serine/glycine-free diet in enhancing antitumor immunity and promoting evasion via PD-L1 lactylation 无丝氨酸/甘氨酸饮食在增强抗肿瘤免疫力和通过 PD-L1 乳化促进规避方面的双重影响
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-21 DOI: 10.1016/j.cmet.2024.10.019
Huan Tong, Zedong Jiang, Linlin Song, Keqin Tan, Xiaomeng Yin, Chengyuan He, Juan Huang, Xiaoyue Li, Xiaofan Jing, Hong Yun, Guangqi Li, Yunuo Zhao, Qianlong Kang, Yuhao Wei, Renwei Li, Zhiwen Long, Jun Yin, Qiang Luo, Xiao Liang, Yanzhi Wan, Xuelei Ma
{"title":"Dual impacts of serine/glycine-free diet in enhancing antitumor immunity and promoting evasion via PD-L1 lactylation","authors":"Huan Tong, Zedong Jiang, Linlin Song, Keqin Tan, Xiaomeng Yin, Chengyuan He, Juan Huang, Xiaoyue Li, Xiaofan Jing, Hong Yun, Guangqi Li, Yunuo Zhao, Qianlong Kang, Yuhao Wei, Renwei Li, Zhiwen Long, Jun Yin, Qiang Luo, Xiao Liang, Yanzhi Wan, Xuelei Ma","doi":"10.1016/j.cmet.2024.10.019","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.019","url":null,"abstract":"The effect of the serine/glycine-free diet (−SG diet) on colorectal cancer (CRC) remains unclear; meanwhile, programmed death-1 (PD-1) inhibitors are less effective for most CRC patients. Here, we demonstrate that the −SG diet inhibits CRC growth and promotes the accumulation of cytotoxic T cells to enhance antitumor immunity. Additionally, we also identified the lactylation of programmed death-ligand 1 (PD-L1) in tumor cells as a mechanism of immune evasion during cytotoxic T cell-mediated antitumor responses, and blocking the PD-1/PD-L1 signaling pathway is able to rejuvenate the function of CD8+ T cells recruited by the −SG diet, indicating the potential of combining the −SG diet with immunotherapy. We conducted a single-arm, phase I study (ChiCTR2300067929). The primary outcome suggests that the −SG diet is feasible and safe for regulating systemic immunity. Secondary outcomes include patient tolerability and potential antitumor effects. Collectively, our findings highlight the promising therapeutic potential of the −SG diet for treating solid tumors.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"18 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Personalized phosphoproteomics of skeletal muscle insulin resistance and exercise links MINDY1 to insulin action 骨骼肌胰岛素抵抗和运动的个性化磷蛋白组学将 MINDY1 与胰岛素作用联系起来
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-21 DOI: 10.1016/j.cmet.2024.10.020
Elise J. Needham, Janne R. Hingst, Johan D. Onslev, Alexis Diaz-Vegas, Magnus R. Leandersson, Hannah Huckstep, Jonas M. Kristensen, Kohei Kido, Erik A. Richter, Kurt Højlund, Benjamin L. Parker, Kristen Cooke, Guang Yang, Christian Pehmøller, Sean J. Humphrey, David E. James, Jørgen F.P. Wojtaszewski
{"title":"Personalized phosphoproteomics of skeletal muscle insulin resistance and exercise links MINDY1 to insulin action","authors":"Elise J. Needham, Janne R. Hingst, Johan D. Onslev, Alexis Diaz-Vegas, Magnus R. Leandersson, Hannah Huckstep, Jonas M. Kristensen, Kohei Kido, Erik A. Richter, Kurt Højlund, Benjamin L. Parker, Kristen Cooke, Guang Yang, Christian Pehmøller, Sean J. Humphrey, David E. James, Jørgen F.P. Wojtaszewski","doi":"10.1016/j.cmet.2024.10.020","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.020","url":null,"abstract":"Type 2 diabetes is preceded by a defective insulin response, yet our knowledge of the precise mechanisms is incomplete. Here, we investigate how insulin resistance alters skeletal muscle signaling and how exercise partially counteracts this effect. We measured parallel phenotypes and phosphoproteomes of insulin-resistant (IR) and insulin-sensitive (IS) men as they responded to exercise and insulin (<em>n</em> = 19, 114 biopsies), quantifying over 12,000 phosphopeptides in each biopsy. Insulin resistance involves selective and time-dependent alterations to signaling, including reduced insulin-stimulated mTORC1 and non-canonical signaling responses. Prior exercise promotes insulin sensitivity even in IR individuals by “priming” a portion of insulin signaling prior to insulin infusion. This includes MINDY1 S441, which we show is an AKT substrate. We found that MINDY1 knockdown enhances insulin-stimulated glucose uptake in rat myotubes. This work delineates the signaling alterations in IR skeletal muscle and identifies MINDY1 as a regulator of insulin action.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"1 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cold-induced thermogenesis requires neutral-lipase-mediated intracellular lipolysis in brown adipocytes 冷诱导的产热需要棕色脂肪细胞中中性脂肪酶介导的细胞内脂肪分解
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-19 DOI: 10.1016/j.cmet.2024.10.018
Etienne Mouisel, Anaïs Bodon, Christophe Noll, Stéphanie Cassant-Sourdy, Marie-Adeline Marques, Remy Flores-Flores, Elodie Riant, Camille Bergoglio, Pierre Vezin, Sylvie Caspar-Bauguil, Camille Fournes-Fraresso, Geneviève Tavernier, Khalil Acheikh Ibn Oumar, Pierre Gourdy, Denis P. Blondin, Pierre-Damien Denechaud, André C. Carpentier, Dominique Langin
{"title":"Cold-induced thermogenesis requires neutral-lipase-mediated intracellular lipolysis in brown adipocytes","authors":"Etienne Mouisel, Anaïs Bodon, Christophe Noll, Stéphanie Cassant-Sourdy, Marie-Adeline Marques, Remy Flores-Flores, Elodie Riant, Camille Bergoglio, Pierre Vezin, Sylvie Caspar-Bauguil, Camille Fournes-Fraresso, Geneviève Tavernier, Khalil Acheikh Ibn Oumar, Pierre Gourdy, Denis P. Blondin, Pierre-Damien Denechaud, André C. Carpentier, Dominique Langin","doi":"10.1016/j.cmet.2024.10.018","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.018","url":null,"abstract":"Long-chain fatty acids (FAs) are the major substrates fueling brown adipose tissue (BAT) thermogenesis. Investigation of mouse models has previously called into question the contribution of brown adipocyte intracellular lipolysis to cold-induced non-shivering thermogenesis. Here, we determined the role of the lipolytic enzymes, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in BAT thermogenesis. Brown fat from mice with inducible brown-adipocyte-specific deletion of ATGL and HSL (BAHKO) is hypertrophied with increased lipid droplet size and preserved mitochondria area and density. Maintenance of body temperature during cold exposure is compromised in BAHKO mice in the fasted but not in the fed state. This altered response to cold is observed in various thermal and nutritional conditions. Positron emission tomography-computed tomography using [<sup>11</sup>C]-acetate and [<sup>11</sup>C]-palmitate shows abolished cold-induced BAT oxidative activity and impaired FA metabolism in BAHKO mice. Our findings show that brown adipocyte intracellular lipolysis is required for BAT thermogenesis.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"11 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ACSS2 acts as a lactyl-CoA synthetase and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion ACSS2 发挥乳酰-CoA 合成酶的作用,并与 KAT2A 相互配合,发挥乳酰转移酶的功能,促进组蛋白乳酰化和肿瘤免疫逃避
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-18 DOI: 10.1016/j.cmet.2024.10.015
Rongxuan Zhu, Xianglai Ye, Xiaotong Lu, Liwei Xiao, Ming Yuan, Hong Zhao, Dong Guo, Ying Meng, Hongkuan Han, Shudi Luo, Qingang Wu, Xiaoming Jiang, Jun Xu, Zhonghui Tang, Yizhi Jane Tao, Zhimin Lu
{"title":"ACSS2 acts as a lactyl-CoA synthetase and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion","authors":"Rongxuan Zhu, Xianglai Ye, Xiaotong Lu, Liwei Xiao, Ming Yuan, Hong Zhao, Dong Guo, Ying Meng, Hongkuan Han, Shudi Luo, Qingang Wu, Xiaoming Jiang, Jun Xu, Zhonghui Tang, Yizhi Jane Tao, Zhimin Lu","doi":"10.1016/j.cmet.2024.10.015","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.015","url":null,"abstract":"Lactyl-coenzyme A (CoA)-dependent histone lysine lactylation impacts gene expression and plays fundamental roles in biological processes. However, mammalian lactyl-CoA synthetases and their regulation of histone lactylation have not yet been identified. Here, we demonstrate that epidermal growth factor receptor (EGFR) activation induces extracellular signal-regulated kinase (ERK)-mediated S267 phosphorylation of acetyl-CoA synthetase 2 (ACSS2) and its subsequent nuclear translocation and complex formation with lysine acetyltransferase 2A (KAT2A). Importantly, ACSS2 functions as a bona fide lactyl-CoA synthetase and converts lactate to lactyl-CoA, which binds to KAT2A as demonstrated by a co-crystal structure analysis. Consequently, KAT2A acts as a lactyltransferase to lactylate histone H3, leading to the expression of Wnt/β-catenin, NF-κB, and PD-L1 and brain tumor growth and immune evasion. A combination treatment with an ACSS2-KAT2A interaction-blocking peptide and an anti-PD-1 antibody induces an additive tumor-inhibitory effect. These findings uncover ACSS2 and KAT2A as hitherto unidentified lactyl-CoA synthetase and lactyltransferase, respectively, and the significance of the ACSS2-KAT2A coupling in gene expression and tumor development.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"6 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nondigestible stachyose binds membranous HSP90β on small intestinal epithelium to regulate the exosomal miRNAs: A new function and mechanism 非消化性水苏糖与小肠上皮细胞上的膜HSP90β结合以调节外泌体miRNA:一种新的功能和机制
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-18 DOI: 10.1016/j.cmet.2024.10.012
Ting Li, Yueyue Liu, Tianchi Duan, Chao Guo, Bin Liu, Xiuqiong Fu, Lu Wang, Xiaoyuan Wang, Xinyue Dong, Chennan Wang, Yalong Lu, Yu Wang, Lin Shi, Honglei Tian, Xingbin Yang
{"title":"Nondigestible stachyose binds membranous HSP90β on small intestinal epithelium to regulate the exosomal miRNAs: A new function and mechanism","authors":"Ting Li, Yueyue Liu, Tianchi Duan, Chao Guo, Bin Liu, Xiuqiong Fu, Lu Wang, Xiaoyuan Wang, Xinyue Dong, Chennan Wang, Yalong Lu, Yu Wang, Lin Shi, Honglei Tian, Xingbin Yang","doi":"10.1016/j.cmet.2024.10.012","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.012","url":null,"abstract":"Oligosaccharides are conventionally recognized as “passersby” in the small intestine. However, our research has reframed this understanding by uncovering a new function of oligosaccharide stachyose, which binds hydrophobic residues of membranous HSP90β on small intestinal epithelial cells, thus reprograming the exosomal miRNA profile. CRISPR-Cas9-mediated HSP90β knockout abolished the accumulation of stachyose on cell membrane and its regulatory effects on these miRNAs. Notably, stachyose’s regulation on these miRNAs is independent of its prebiotic role, as evidenced by the observation of stachyose-altered fecal miRNAs in pseudo-germ-free mice. These stachyose-altered miRNAs further shaped colonic microbiome, especially harboring <em>Lactobacillus</em> in mice. Thereinto, miR-30a-5p that was downregulated (Log<sub>2</sub>FC &lt; −2) in both mice and human feces following stachyose treatment could specifically suppress the growth of <em>Lactobacillus reuteri</em>. These findings build a new regulatory axis of stachyose-intestinal miRNAs-gut microbiota and unveil a previously unknown mechanism underlying the direct “talk” of oligosaccharides to intestine epithelium via membranous HSP90β.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"10 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human genetics identify convergent signals in mitochondrial LACTB-mediated lipid metabolism in cardiovascular-kidney-metabolic syndrome 人类遗传学发现心血管-肾脏-代谢综合征线粒体 LACTB 介导的脂质代谢中存在趋同信号
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-18 DOI: 10.1016/j.cmet.2024.10.007
Shen Li, Hongbo Liu, Hailong Hu, Eunji Ha, Praveena Prasad, Brenita C. Jenkins, Ujjalkumar Subhash Das, Sarmistha Mukherjee, Kyosuke Shishikura, Renming Hu, Daniel J. Rader, Liming Pei, Joseph A. Baur, Megan L. Matthews, Garret A. FitzGerald, Melanie R. McReynolds, Katalin Susztak
{"title":"Human genetics identify convergent signals in mitochondrial LACTB-mediated lipid metabolism in cardiovascular-kidney-metabolic syndrome","authors":"Shen Li, Hongbo Liu, Hailong Hu, Eunji Ha, Praveena Prasad, Brenita C. Jenkins, Ujjalkumar Subhash Das, Sarmistha Mukherjee, Kyosuke Shishikura, Renming Hu, Daniel J. Rader, Liming Pei, Joseph A. Baur, Megan L. Matthews, Garret A. FitzGerald, Melanie R. McReynolds, Katalin Susztak","doi":"10.1016/j.cmet.2024.10.007","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.007","url":null,"abstract":"The understanding of cardiovascular-kidney-metabolic syndrome remains difficult despite recently performed large scale genome-wide association studies. Here, we identified beta-lactamase (LACTB), a novel gene whose expression is targeted by genetic variations causing kidney dysfunction and hyperlipidemia. Mice with LACTB deletion developed impaired glucose tolerance, elevated lipid levels, and increased sensitivity to kidney disease, while mice with tubule-specific overexpression of LACTB were protected from kidney injury. We show that LACTB is a novel mitochondrial protease cleaving and activating phospholipase A2 group VI (PLA2G6), a kidney-metabolic risk gene itself. Genetic deletion of PLA2G6 in tubule-specific LACTB-overexpressing mice abolished the protective function of LACTB. Via mouse and human lipidomic studies, we show that LACTB and downstream PLA2G6 convert oxidized phosphatidylethanolamine to lyso-phosphatidylethanolamine and thereby regulate mitochondrial function and ferroptosis. In summary, we identify a novel gene and a core targetable pathway for kidney-metabolic disorders.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"13 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Altered sphingolipid biosynthetic flux and lipoprotein trafficking contribute to trans-fat-induced atherosclerosis 鞘脂生物合成通量和脂蛋白运输的改变是反式脂肪诱发动脉粥样硬化的原因之一
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-14 DOI: 10.1016/j.cmet.2024.10.016
Jivani M. Gengatharan, Michal K. Handzlik, Zoya Y. Chih, Maureen L. Ruchhoeft, Patrick Secrest, Ethan L. Ashley, Courtney R. Green, Martina Wallace, Philip L.S.M. Gordts, Christian M. Metallo
{"title":"Altered sphingolipid biosynthetic flux and lipoprotein trafficking contribute to trans-fat-induced atherosclerosis","authors":"Jivani M. Gengatharan, Michal K. Handzlik, Zoya Y. Chih, Maureen L. Ruchhoeft, Patrick Secrest, Ethan L. Ashley, Courtney R. Green, Martina Wallace, Philip L.S.M. Gordts, Christian M. Metallo","doi":"10.1016/j.cmet.2024.10.016","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.016","url":null,"abstract":"Dietary fat drives the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), particularly through circulating cholesterol and triglyceride-rich lipoprotein remnants. Industrially produced <em>trans</em>-unsaturated fatty acids (TFAs) incorporated into food supplies significantly promote ASCVD. However, the molecular trafficking of TFAs responsible for this association is not well understood. Here, we demonstrate that TFAs are preferentially incorporated into sphingolipids by serine palmitoyltransferase (SPT) and secreted from cells <em>in vitro</em>. Administering high-fat diets (HFDs) enriched in TFAs to <em>Ldlr</em><sup><em>−/−</em></sup> mice accelerated hepatic very-low-density lipoprotein (VLDL) and sphingolipid secretion into circulation to promote atherogenesis compared with a <em>cis</em>-unsaturated fatty acid (CFA)-enriched HFD. SPT inhibition mitigated these phenotypes and reduced circulating atherogenic VLDL enriched in TFA-derived polyunsaturated sphingomyelin. Transcriptional analysis of human liver revealed distinct regulation of <em>SPTLC2</em> versus <em>SPTLC3</em> subunit expression, consistent with human genetic correlations in ASCVD, further establishing sphingolipid metabolism as a critical node mediating the progression of ASCVD in response to specific dietary fats.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"37 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiota-derived lysophosphatidylcholine alleviates Alzheimer’s disease pathology via suppressing ferroptosis 源于微生物群的溶血磷脂酰胆碱通过抑制铁蛋白沉积缓解阿尔茨海默病的病理变化
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-06 DOI: 10.1016/j.cmet.2024.10.006
Xu Zha, Xicheng Liu, Mengping Wei, Huanwei Huang, Jiaqi Cao, Shuo Liu, Xiaomei Bian, Yuting Zhang, Fenyan Xiao, Yuping Xie, Wei Wang, Chen Zhang
{"title":"Microbiota-derived lysophosphatidylcholine alleviates Alzheimer’s disease pathology via suppressing ferroptosis","authors":"Xu Zha, Xicheng Liu, Mengping Wei, Huanwei Huang, Jiaqi Cao, Shuo Liu, Xiaomei Bian, Yuting Zhang, Fenyan Xiao, Yuping Xie, Wei Wang, Chen Zhang","doi":"10.1016/j.cmet.2024.10.006","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.006","url":null,"abstract":"Alzheimer’s disease (AD) is a pervasive neurodegenerative disorder, and new approaches for its prevention and therapy are critically needed. Here, we elucidate a gut-microbiome-brain axis that offers actionable perspectives for achieving this objective. Using the 5xFAD mouse model, we identify increased <em>Clostridium</em> abundance and decreased <em>Bacteroides</em> abundance as key features associated with β-amyloid (Aβ) burden. Treatment with <em>Bacteroides ovatus</em>, or its associated metabolite lysophosphatidylcholine (LPC), significantly reduces Aβ load and ameliorates cognitive impairment. Mechanistically, LPC acts through the orphan receptor GPR119, inhibiting ACSL4 expression, thereby suppressing ferroptosis and ameliorating AD pathologies. Analysis of fecal and serum samples from individuals with AD also reveals diminished levels of <em>Bacteroides</em> and LPC. This study thus identifies a <em>B.</em><em>ovatus</em>-triggered pathway regulating AD pathologies and indicates that the use of single gut microbiota, metabolite, or small molecule compound may complement current prevention and treatment approaches for AD.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"13 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiota regulates stress responsivity via the circadian system 肠道微生物群通过昼夜节律系统调节压力反应性
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-05 DOI: 10.1016/j.cmet.2024.10.003
Gabriel S.S. Tofani, Sarah-Jane Leigh, Cassandra E. Gheorghe, Thomaz F.S. Bastiaanssen, Lars Wilmes, Paromita Sen, Gerard Clarke, John F. Cryan
{"title":"Gut microbiota regulates stress responsivity via the circadian system","authors":"Gabriel S.S. Tofani, Sarah-Jane Leigh, Cassandra E. Gheorghe, Thomaz F.S. Bastiaanssen, Lars Wilmes, Paromita Sen, Gerard Clarke, John F. Cryan","doi":"10.1016/j.cmet.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.003","url":null,"abstract":"Stress and circadian systems are interconnected through the hypothalamic-pituitary-adrenal (HPA) axis to maintain responses to external stimuli. Yet, the mechanisms of how such signals are orchestrated remain unknown. Here, we uncover the gut microbiota as a regulator of HPA-axis rhythmicity. Microbial depletion disturbs the brain transcriptome and metabolome in stress-responding pathways in the hippocampus and amygdala across the day. This is coupled with a dysregulation of the circadian pacemaker in the brain that results in perturbed glucocorticoid rhythmicity. The resulting hyper-activation of the HPA axis at the sleep/wake transition drives time-of-day-specific impairments of the stress response and stress-sensitive behaviors. Finally, microbiota transplantation confirmed that diurnal oscillations of gut microbes underlie altered glucocorticoid secretion and that <em>L. reuteri</em> is a candidate strain for such effects. Our data offer compelling evidence that the microbiota regulates stress responsiveness in a circadian manner and is necessary to respond adaptively to stressors throughout the day.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"242 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GPR56: GPCR as a guardian against ferroptosis GPR56:GPCR 是防止铁变态反应的卫士
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-05 DOI: 10.1016/j.cmet.2024.08.011
Yuelong Yan, Li Zhuang, Boyi Gan
{"title":"GPR56: GPCR as a guardian against ferroptosis","authors":"Yuelong Yan, Li Zhuang, Boyi Gan","doi":"10.1016/j.cmet.2024.08.011","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.08.011","url":null,"abstract":"Transmembrane receptor proteins are proficient in sensing external signals and initiating downstream pathways to control cell survival. Lin et al. demonstrated that GPR56, a G-protein-coupled receptor, can be activated by its agonist to suppress ferroptosis—a form of cell death—and effectively mitigate ferroptosis-associated liver damage.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"6 1","pages":""},"PeriodicalIF":29.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信