Cell metabolism最新文献

筛选
英文 中文
Microbiota-derived lysophosphatidylcholine alleviates Alzheimer’s disease pathology via suppressing ferroptosis 源于微生物群的溶血磷脂酰胆碱通过抑制铁蛋白沉积缓解阿尔茨海默病的病理变化
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-06 DOI: 10.1016/j.cmet.2024.10.006
Xu Zha, Xicheng Liu, Mengping Wei, Huanwei Huang, Jiaqi Cao, Shuo Liu, Xiaomei Bian, Yuting Zhang, Fenyan Xiao, Yuping Xie, Wei Wang, Chen Zhang
{"title":"Microbiota-derived lysophosphatidylcholine alleviates Alzheimer’s disease pathology via suppressing ferroptosis","authors":"Xu Zha, Xicheng Liu, Mengping Wei, Huanwei Huang, Jiaqi Cao, Shuo Liu, Xiaomei Bian, Yuting Zhang, Fenyan Xiao, Yuping Xie, Wei Wang, Chen Zhang","doi":"10.1016/j.cmet.2024.10.006","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.006","url":null,"abstract":"Alzheimer’s disease (AD) is a pervasive neurodegenerative disorder, and new approaches for its prevention and therapy are critically needed. Here, we elucidate a gut-microbiome-brain axis that offers actionable perspectives for achieving this objective. Using the 5xFAD mouse model, we identify increased <em>Clostridium</em> abundance and decreased <em>Bacteroides</em> abundance as key features associated with β-amyloid (Aβ) burden. Treatment with <em>Bacteroides ovatus</em>, or its associated metabolite lysophosphatidylcholine (LPC), significantly reduces Aβ load and ameliorates cognitive impairment. Mechanistically, LPC acts through the orphan receptor GPR119, inhibiting ACSL4 expression, thereby suppressing ferroptosis and ameliorating AD pathologies. Analysis of fecal and serum samples from individuals with AD also reveals diminished levels of <em>Bacteroides</em> and LPC. This study thus identifies a <em>B.</em><em>ovatus</em>-triggered pathway regulating AD pathologies and indicates that the use of single gut microbiota, metabolite, or small molecule compound may complement current prevention and treatment approaches for AD.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiota regulates stress responsivity via the circadian system 肠道微生物群通过昼夜节律系统调节压力反应性
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-05 DOI: 10.1016/j.cmet.2024.10.003
Gabriel S.S. Tofani, Sarah-Jane Leigh, Cassandra E. Gheorghe, Thomaz F.S. Bastiaanssen, Lars Wilmes, Paromita Sen, Gerard Clarke, John F. Cryan
{"title":"Gut microbiota regulates stress responsivity via the circadian system","authors":"Gabriel S.S. Tofani, Sarah-Jane Leigh, Cassandra E. Gheorghe, Thomaz F.S. Bastiaanssen, Lars Wilmes, Paromita Sen, Gerard Clarke, John F. Cryan","doi":"10.1016/j.cmet.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.003","url":null,"abstract":"Stress and circadian systems are interconnected through the hypothalamic-pituitary-adrenal (HPA) axis to maintain responses to external stimuli. Yet, the mechanisms of how such signals are orchestrated remain unknown. Here, we uncover the gut microbiota as a regulator of HPA-axis rhythmicity. Microbial depletion disturbs the brain transcriptome and metabolome in stress-responding pathways in the hippocampus and amygdala across the day. This is coupled with a dysregulation of the circadian pacemaker in the brain that results in perturbed glucocorticoid rhythmicity. The resulting hyper-activation of the HPA axis at the sleep/wake transition drives time-of-day-specific impairments of the stress response and stress-sensitive behaviors. Finally, microbiota transplantation confirmed that diurnal oscillations of gut microbes underlie altered glucocorticoid secretion and that <em>L. reuteri</em> is a candidate strain for such effects. Our data offer compelling evidence that the microbiota regulates stress responsiveness in a circadian manner and is necessary to respond adaptively to stressors throughout the day.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GPR56: GPCR as a guardian against ferroptosis GPR56:GPCR 是防止铁变态反应的卫士
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-05 DOI: 10.1016/j.cmet.2024.08.011
Yuelong Yan, Li Zhuang, Boyi Gan
{"title":"GPR56: GPCR as a guardian against ferroptosis","authors":"Yuelong Yan, Li Zhuang, Boyi Gan","doi":"10.1016/j.cmet.2024.08.011","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.08.011","url":null,"abstract":"Transmembrane receptor proteins are proficient in sensing external signals and initiating downstream pathways to control cell survival. Lin et al. demonstrated that GPR56, a G-protein-coupled receptor, can be activated by its agonist to suppress ferroptosis—a form of cell death—and effectively mitigate ferroptosis-associated liver damage.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sympathetic paradigm shift for the role of NPY in obesity NPY 在肥胖症中作用的同情范式转变
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-05 DOI: 10.1016/j.cmet.2024.10.010
Olivier Lavoie, Alexandre Caron
{"title":"A sympathetic paradigm shift for the role of NPY in obesity","authors":"Olivier Lavoie, Alexandre Caron","doi":"10.1016/j.cmet.2024.10.010","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.010","url":null,"abstract":"Neuropeptide Y (NPY) is a powerful orexigenic factor in the brain. However, mice lacking NPY or NPY receptor Y1 (NPY1R) have minimal changes in basal food intake. In a study published in <em>Nature</em>, Zhu et al.<span><span><sup>1</sup></span></span> demystify this paradox and show that central and peripheral NPY have antipodal roles in energy homeostasis.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-invasive lipid panel of MASLD fibrosis transition underscores the role of lipoprotein sulfatides in hepatic immunomodulation MASLD纤维化转变的非侵入性脂质面板强调了脂蛋白硫化物在肝脏免疫调节中的作用
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-04 DOI: 10.1016/j.cmet.2024.09.009
Sin Man Lam, Zehua Wang, Jin-Wen Song, Yue Shi, Wen-Yue Liu, Lin-Yu Wan, Kaibo Duan, Gek Huey Chua, Yingjuan Zhou, Guibin Wang, Xiahe Huang, Yingchun Wang, Fu-Sheng Wang, Ming-Hua Zheng, Guanghou Shui
{"title":"Non-invasive lipid panel of MASLD fibrosis transition underscores the role of lipoprotein sulfatides in hepatic immunomodulation","authors":"Sin Man Lam, Zehua Wang, Jin-Wen Song, Yue Shi, Wen-Yue Liu, Lin-Yu Wan, Kaibo Duan, Gek Huey Chua, Yingjuan Zhou, Guibin Wang, Xiahe Huang, Yingchun Wang, Fu-Sheng Wang, Ming-Hua Zheng, Guanghou Shui","doi":"10.1016/j.cmet.2024.09.009","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.09.009","url":null,"abstract":"There exists a pressing need for a non-invasive panel that differentiates mild fibrosis from non-fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD). In this work, we applied quantitative lipidomics and sterolomics on sera from the PERSONS cohort with biopsy-based histological assessment of liver pathology. We trained a lasso regression model using quantitative omics data and clinical variables, deriving a combinatorial panel of lipids and clinical indices that differentiates mild fibrosis (<u>&gt;</u>F1, <em>n</em> = 324) from non-fibrosis (F0, <em>n</em> = 195), with an area under receiver operating characteristic curve (AUROC) at 0.775 (95% confidence interval [CI]: 0.735–0.816). Circulating sulfatides (SLs) emerged as central lipids distinctly associated with fibrosis pathogenesis in MASLD. Lipidomics analysis of lipoprotein fractions revealed a redistribution of circulating SLs from high-density lipoproteins (HDLs) onto low-density lipoproteins (LDLs) in MASLD fibrosis. We further verified that patient LDLs with reduced SL content triggered a smaller activation of type II natural killer T lymphocytes, compared with control LDLs. Our results suggest that hepatic crosstalk with systemic immunity mediated by lipoprotein metabolism underlies fibrosis progression at early-stage MASLD.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A blood-based biomarker panel for non-invasive diagnosis of metabolic dysfunction-associated steatohepatitis 用于无创诊断代谢功能障碍相关性脂肪性肝炎的血液生物标记物面板
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-04 DOI: 10.1016/j.cmet.2024.10.008
Xiang Zhang, Ming-Hua Zheng, Dehua Liu, Yufeng Lin, Sherlot Juan Song, Eagle Siu-Hong Chu, Dabin Liu, Seema Singh, Michael Berman, Harry Cheuk-Hay Lau, Hongyan Gou, Grace Lai-Hung Wong, Ni Zhang, Hai-Yang Yuan, Rohit Loomba, Vincent Wai-Sun Wong, Jun Yu
{"title":"A blood-based biomarker panel for non-invasive diagnosis of metabolic dysfunction-associated steatohepatitis","authors":"Xiang Zhang, Ming-Hua Zheng, Dehua Liu, Yufeng Lin, Sherlot Juan Song, Eagle Siu-Hong Chu, Dabin Liu, Seema Singh, Michael Berman, Harry Cheuk-Hay Lau, Hongyan Gou, Grace Lai-Hung Wong, Ni Zhang, Hai-Yang Yuan, Rohit Loomba, Vincent Wai-Sun Wong, Jun Yu","doi":"10.1016/j.cmet.2024.10.008","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.008","url":null,"abstract":"The current diagnosis of metabolic dysfunction-associated steatotic liver disease (MASLD) and its severe form, metabolic dysfunction-associated steatohepatitis (MASH), is suboptimal. Here, we recruited 700 individuals, including 184 from Hong Kong as a discovery cohort and 516 from San Diego, Wenzhou, and Hong Kong as three validation cohorts. A panel of 3 parameters (C-X-C motif chemokine ligand 10 [CXCL10], cytokeratin 18 fragments M30 [CK-18], and adjusted body mass index [BMI]) was formulated (termed N3-MASH), which discriminated patients with MASLD from healthy controls with an area under the receiver operating characteristic (AUROC) of 0.954. Among patients with MASLD, N3-MASH could identify patients with MASH with an AUROC of 0.823, achieving 90.0% specificity, 62.9% sensitivity, and 88.6% positive predictive value. The diagnostic performance of N3-MASH was confirmed in three validation cohorts with AUROC of 0.802, 0.805, and 0.823, respectively. Additionally, N3-MASH identifies patients with MASH improvement with an AUROC of 0.857. In summary, we developed a robust blood-based panel for the non-invasive diagnosis of MASH, which might help clinicians reduce unnecessary liver biopsies.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperglycemia-triggered lipid peroxidation destabilizes STAT4 and impairs anti-viral Th1 responses in type 2 diabetes 高血糖引发的脂质过氧化会破坏 STAT4 的稳定性并损害 2 型糖尿病患者的 Th1 抗病毒反应
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-01 DOI: 10.1016/j.cmet.2024.10.004
Victor Gray, Weixin Chen, Rachael Julia Yuenyinn Tan, Jia Ming Nickolas Teo, Zhihao Huang, Carol Ho-Yi Fong, Tommy Wing Hang Law, Zi-Wei Ye, Shuofeng Yuan, Xiucong Bao, Ivan Fan-Ngai Hung, Kathryn Choon-Beng Tan, Chi-Ho Lee, Guang Sheng Ling
{"title":"Hyperglycemia-triggered lipid peroxidation destabilizes STAT4 and impairs anti-viral Th1 responses in type 2 diabetes","authors":"Victor Gray, Weixin Chen, Rachael Julia Yuenyinn Tan, Jia Ming Nickolas Teo, Zhihao Huang, Carol Ho-Yi Fong, Tommy Wing Hang Law, Zi-Wei Ye, Shuofeng Yuan, Xiucong Bao, Ivan Fan-Ngai Hung, Kathryn Choon-Beng Tan, Chi-Ho Lee, Guang Sheng Ling","doi":"10.1016/j.cmet.2024.10.004","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.004","url":null,"abstract":"Patients with type 2 diabetes (T2D) are more susceptible to severe respiratory viral infections, but the underlying mechanisms remain elusive. Here, we show that patients with T2D and coronavirus disease 2019 (COVID-19) infections, and influenza-infected T2D mice, exhibit defective T helper 1 (Th1) responses, which are an essential component of anti-viral immunity. This defect stems from intrinsic metabolic perturbations in CD4<sup>+</sup> T cells driven by hyperglycemia. Mechanistically, hyperglycemia triggers mitochondrial dysfunction and excessive fatty acid synthesis, leading to elevated oxidative stress and aberrant lipid accumulation within CD4<sup>+</sup> T cells. These abnormalities promote lipid peroxidation (LPO), which drives carbonylation of signal transducer and activator of transcription 4 (STAT4), a crucial Th1-lineage-determining factor. Carbonylated STAT4 undergoes rapid degradation, causing reduced T-bet induction and diminished Th1 differentiation. LPO scavenger ameliorates Th1 defects in patients with T2D who have poor glycemic control and restores viral control in T2D mice. Thus, this hyperglycemia-LPO-STAT4 axis underpins reduced Th1 activity in T2D hosts, with important implications for managing T2D-related viral complications.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma protein-based organ-specific aging and mortality models unveil diseases as accelerated aging of organismal systems 基于血浆蛋白的器官特异性衰老和死亡模型揭示了疾病是机体系统加速衰老的表现
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-11-01 DOI: 10.1016/j.cmet.2024.10.005
Ludger J.E. Goeminne, Anastasiya Vladimirova, Alec Eames, Alexander Tyshkovskiy, M. Austin Argentieri, Kejun Ying, Mahdi Moqri, Vadim N. Gladyshev
{"title":"Plasma protein-based organ-specific aging and mortality models unveil diseases as accelerated aging of organismal systems","authors":"Ludger J.E. Goeminne, Anastasiya Vladimirova, Alec Eames, Alexander Tyshkovskiy, M. Austin Argentieri, Kejun Ying, Mahdi Moqri, Vadim N. Gladyshev","doi":"10.1016/j.cmet.2024.10.005","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.005","url":null,"abstract":"Aging is a complex process manifesting at molecular, cellular, organ, and organismal levels. It leads to functional decline, disease, and ultimately death, but the relationship between these fundamental biomedical features remains elusive. By applying elastic net regularization to plasma proteome data of over 50,000 human subjects in the UK Biobank and other cohorts, we report interpretable organ-specific and conventional aging models trained on chronological age, mortality, and longitudinal proteome data. These models predict organ/system-specific disease and indicate that men age faster than women in most organs. Accelerated organ aging leads to diseases in these organs, and specific diets, lifestyles, professions, and medications influence organ aging rates. We then identify proteins driving these associations with organ-specific aging. Our analyses reveal that age-related chronic diseases epitomize accelerated organ- and system-specific aging, modifiable through environmental factors, advocating for both universal whole-organism and personalized organ/system-specific anti-aging interventions.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-seizure effects of norepinephrine-induced free fatty acid release 去甲肾上腺素诱导游离脂肪酸释放的抗癫痫作用
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-10-31 DOI: 10.1016/j.cmet.2024.10.011
Baoman Li, Qian Sun, Fengfei Ding, Qiwu Xu, Ning Kang, Yang Xue, Antonio Ladron-de-Guevara, Hajime Hirase, Pia Weikop, Sheng Gong, Smith Nathan, Maiken Nedergaard
{"title":"Anti-seizure effects of norepinephrine-induced free fatty acid release","authors":"Baoman Li, Qian Sun, Fengfei Ding, Qiwu Xu, Ning Kang, Yang Xue, Antonio Ladron-de-Guevara, Hajime Hirase, Pia Weikop, Sheng Gong, Smith Nathan, Maiken Nedergaard","doi":"10.1016/j.cmet.2024.10.011","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.011","url":null,"abstract":"The brain’s ability to rapidly transition between sleep, quiet wakefulness, and states of high vigilance is remarkable. Cerebral norepinephrine (NE) plays a key role in promoting wakefulness, but how does the brain avoid neuronal hyperexcitability upon arousal? Here, we show that NE exposure results in the generation of free fatty acids (FFAs) within the plasma membrane from both astrocytes and neurons. In turn, FFAs dampen excitability by differentially modulating the activity of astrocytic and neuronal Na<sup>+</sup>, K<sup>+</sup>, ATPase. Direct application of FFA to the occipital cortex in awake, behaving mice dampened visual-evoked potential (VEP). Conversely, blocking FFA production via local application of a lipase inhibitor heightened VEP and triggered seizure-like activity. These results suggest that FFA release is a crucial step in NE signaling that safeguards against hyperexcitability. Targeting lipid-signaling pathways may offer a novel therapeutic approach for seizure prevention.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bempedoic acid suppresses diet-induced hepatic steatosis independently of ATP-citrate lyase 双鱼藤酸抑制饮食诱导的肝脂肪变性,与 ATP 柠檬酸裂解酶无关
IF 29 1区 生物学
Cell metabolism Pub Date : 2024-10-28 DOI: 10.1016/j.cmet.2024.10.014
Joyce Y. Liu, Ramya S. Kuna, Laura V. Pinheiro, Phuong T.T. Nguyen, Jaclyn E. Welles, Jack M. Drummond, Nivitha Murali, Prateek Sharma, Julianna G. Supplee, Mia Shiue, Steven Zhao, Aimee T. Farria, Avi Kumar, Mauren L. Ruchhoeft, Christina Demetriadou, Daniel S. Kantner, Adam Chatoff, Emily Megill, Paul M. Titchenell, Nathaniel W. Snyder, Kathryn E. Wellen
{"title":"Bempedoic acid suppresses diet-induced hepatic steatosis independently of ATP-citrate lyase","authors":"Joyce Y. Liu, Ramya S. Kuna, Laura V. Pinheiro, Phuong T.T. Nguyen, Jaclyn E. Welles, Jack M. Drummond, Nivitha Murali, Prateek Sharma, Julianna G. Supplee, Mia Shiue, Steven Zhao, Aimee T. Farria, Avi Kumar, Mauren L. Ruchhoeft, Christina Demetriadou, Daniel S. Kantner, Adam Chatoff, Emily Megill, Paul M. Titchenell, Nathaniel W. Snyder, Kathryn E. Wellen","doi":"10.1016/j.cmet.2024.10.014","DOIUrl":"https://doi.org/10.1016/j.cmet.2024.10.014","url":null,"abstract":"ATP citrate lyase (ACLY) synthesizes acetyl-CoA for <em>de novo</em> lipogenesis (DNL), which is elevated in metabolic dysfunction-associated steatotic liver disease. Hepatic ACLY is inhibited by the LDL-cholesterol-lowering drug bempedoic acid (BPA), which also improves steatosis in mice. While BPA potently suppresses hepatic DNL and increases fat catabolism, it is unclear if ACLY is its primary molecular target in reducing liver triglyceride. We show that on a Western diet, loss of hepatic ACLY alone or together with the acetyl-CoA synthetase ACSS2 unexpectedly exacerbates steatosis, linked to reduced PPARα target gene expression and fatty acid oxidation. Importantly, BPA treatment ameliorates Western diet-mediated triacylglyceride accumulation in both WT and liver ACLY knockout mice, indicating that its primary effects on hepatic steatosis are ACLY independent. Together, these data indicate that hepatic ACLY plays an unexpected role in restraining diet-dependent lipid accumulation and that BPA exerts substantial effects on hepatic lipid metabolism independently of ACLY.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":29.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信