Cellular Polymers最新文献

筛选
英文 中文
Recent Developments in “Waterlily” Comfort Cushioning for the Flexible Slabstock Industry 柔性板材行业 "睡莲 "舒适缓冲装置的最新进展
IF 1.6 4区 医学
Cellular Polymers Pub Date : 2024-05-17 DOI: 10.1177/0262489319951401003
A. Parfondry, E. Cassidy
{"title":"Recent Developments in “Waterlily” Comfort Cushioning for the Flexible Slabstock Industry","authors":"A. Parfondry, E. Cassidy","doi":"10.1177/0262489319951401003","DOIUrl":"https://doi.org/10.1177/0262489319951401003","url":null,"abstract":"","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CONFERENCES AND SEMINARS 会议和研讨会
IF 1.6 4区 医学
Cellular Polymers Pub Date : 2024-05-17 DOI: 10.1177/0262489319951401006
{"title":"CONFERENCES AND SEMINARS","authors":"","doi":"10.1177/0262489319951401006","DOIUrl":"https://doi.org/10.1177/0262489319951401006","url":null,"abstract":"","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of foaming-induced crystallization behavior on the structure of poly(butylene adipate-co-terephthalate) supercritical foamed beads 发泡引起的结晶行为对聚(己二酸丁二醇酯-对苯二甲酸丁二酯)超临界发泡珠结构的影响
IF 1.6 4区 医学
Cellular Polymers Pub Date : 2024-03-28 DOI: 10.1177/02624893241242193
Haihui Luo, Xuanle Ou, Zhixian Dong, R. Xu, C. Lei, Dahua Chen
{"title":"Influence of foaming-induced crystallization behavior on the structure of poly(butylene adipate-co-terephthalate) supercritical foamed beads","authors":"Haihui Luo, Xuanle Ou, Zhixian Dong, R. Xu, C. Lei, Dahua Chen","doi":"10.1177/02624893241242193","DOIUrl":"https://doi.org/10.1177/02624893241242193","url":null,"abstract":"The crystallization behavior during foaming directly affects the foaming properties. For crystalline polymers, there is no consensus on the influence of the crystallization behavior during foaming process on the stabilization of the cell structure. In this work, PBAT foamed bead and unfoamed pellets were prepared by controlling the saturated temperatures in supercritical CO2, soaking step (one or two) and the depressurization rate, respectively. Double melting peaks were observed in the DSC curve of supercritical CO2 foamed PBAT beads. By comparing the outgassing rates we find that the stretching-induced crystallization caused by the rapid expansion of the gas during foaming plays an important role in the stabilization of the cells. Although the crystalline perfection or crystal size at this time is much smaller than that of the crystalline grains formed during static cooling, the rapid crystallization is effective in stabilizing the cell structure of the foamed pores. Compared to normal supercritical foaming processes, the two-step foaming process of soaking CO2 at high temperatures followed by foaming at low temperatures results in an increase in cell size and expansion ratio. At high temperatures, more CO2 diffuses into the PBAT pellets, increasing the instantaneous gas concentration in the pellets for foaming, and the rapid stretching produces stretching-induced crystallization that raises the average size of the cells, further increasing the expansion multiplicity of individual cells. The average cell size of foam beads rises from 37.8 to 48.8 µm and the expansion ratio also increases to 8.6 with saturated temperature increasing form 95 to 105°C. The two-step soaking foaming method is a more efficient way of manufacturing industrial foamed beads, allowing for the preparation of better foam beads at low temperatures.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140369793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of natural rubber foams: Effect of foaming agent content and processing conditions on the cellular structure and mechanical properties 优化天然橡胶泡沫:发泡剂含量和加工条件对蜂窝结构和机械性能的影响
IF 1.6 4区 医学
Cellular Polymers Pub Date : 2024-03-21 DOI: 10.1177/02624893241241680
Ehsan Rostami-Tapeh-Esmaeil, Hibal Ahmad, Hossein Kazemi, Denis Rodrigue
{"title":"Optimization of natural rubber foams: Effect of foaming agent content and processing conditions on the cellular structure and mechanical properties","authors":"Ehsan Rostami-Tapeh-Esmaeil, Hibal Ahmad, Hossein Kazemi, Denis Rodrigue","doi":"10.1177/02624893241241680","DOIUrl":"https://doi.org/10.1177/02624893241241680","url":null,"abstract":"In the past decades, natural rubber (NR) foams became popular in the automotive, construction and aerospace industries because of their lightweight, flexibility and shock-absorbing properties. The selection of optimal formulation and processing parameters is critical to produce foam with specific properties depending on the application. In this study, the effect of foaming agent concentration, foaming temperature and time on the morphological and mechanical properties of NR foams was investigated. First, increasing the foaming agent content from 5 to 9 phr (parts per hundred rubber) increased the cell size (16%), while decreasing the compression modulus (28%). In the second part, increasing the foaming temperature (145 to 155°C) resulted in larger cell size (163%); while decreasing the cell density (28%), compression modulus (2%), and hardness (1%). In the third part, increasing the foaming time (25 to 45 min) led to smaller cell size (63%) combined with higher cell density (100%), compression modulus (16%), and hardness (3%). Based on all the results obtained, the best NR foam was obtained with 7 phr of foaming agent and produced at 150°C for 35 min leading to superior morphological and mechanical performance: the smallest cell size (25 µm) and the most uniform cell size distribution ( Đ = 1.03) generating the highest compression modulus (3.36 MPa). Finally, the experimental compression results were combined to build a nonlinear regression model to optimize the formulation and processing conditions leading to 6.5 phr of OBSH molded at 150°C for 36 min. The model showed good agreement with a validation test with less than 2% deviation observed for both compression modulus and strength.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of thermal-oxidative and mechanical degradation of recycled LDPE on foaming 再生低密度聚乙烯的热氧化和机械降解对发泡的影响
IF 1.6 4区 医学
Cellular Polymers Pub Date : 2024-02-02 DOI: 10.1177/02624893241232379
Huanyu Zou, Jiawei Lu, Pengfei Zhou, Tao Liu
{"title":"Effect of thermal-oxidative and mechanical degradation of recycled LDPE on foaming","authors":"Huanyu Zou, Jiawei Lu, Pengfei Zhou, Tao Liu","doi":"10.1177/02624893241232379","DOIUrl":"https://doi.org/10.1177/02624893241232379","url":null,"abstract":"In this study, we investigated the effect of recycling process on the molecular structure, viscoelasticity and foaming behavior of low density polyethylene (LDPE). A series of LDPE samples with different recycling process was prepared by multiple extrusion using a twin-screw extruder. The molecular weight distribution (MWD) was characterized by gel permeation chromatography (GPC). Wider MWD indicated the generation of higher molecular weight products. Small-amplitude oscillation rheology showed reduced loss factors, indicating that the chain entanglement was more difficult to relax. Moreover, nonlinear viscoelasticity was investigated using elongational rheology and molecular stress function (MSF) model. The results showed a steeper strain hardening exhibited in recycled LDPE. The correlated parameter β in the MSF model indicated that the recycling did not significantly change the branches regularity in LDPE, while the increasing [Formula: see text], the other correlated parameter, indicated that the chain entanglement was enhanced, which was corresponded to the improvement of high molecular weight component. The foaming results revealed that the recycled LDPE had finer cellular structure and higher nucleation density. Moreover, despite adding PP and active CaCO3 to simulate the impurities, the foamability loss of these mixed samples was well restricted and still valuable. Recycled LDPE is instead better than its corresponding virgin one in foaming performance, exhibiting the application potential for further developments.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139868874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of thermal-oxidative and mechanical degradation of recycled LDPE on foaming 再生低密度聚乙烯的热氧化和机械降解对发泡的影响
IF 1.6 4区 医学
Cellular Polymers Pub Date : 2024-02-02 DOI: 10.1177/02624893241232379
Huanyu Zou, Jiawei Lu, Pengfei Zhou, Tao Liu
{"title":"Effect of thermal-oxidative and mechanical degradation of recycled LDPE on foaming","authors":"Huanyu Zou, Jiawei Lu, Pengfei Zhou, Tao Liu","doi":"10.1177/02624893241232379","DOIUrl":"https://doi.org/10.1177/02624893241232379","url":null,"abstract":"In this study, we investigated the effect of recycling process on the molecular structure, viscoelasticity and foaming behavior of low density polyethylene (LDPE). A series of LDPE samples with different recycling process was prepared by multiple extrusion using a twin-screw extruder. The molecular weight distribution (MWD) was characterized by gel permeation chromatography (GPC). Wider MWD indicated the generation of higher molecular weight products. Small-amplitude oscillation rheology showed reduced loss factors, indicating that the chain entanglement was more difficult to relax. Moreover, nonlinear viscoelasticity was investigated using elongational rheology and molecular stress function (MSF) model. The results showed a steeper strain hardening exhibited in recycled LDPE. The correlated parameter β in the MSF model indicated that the recycling did not significantly change the branches regularity in LDPE, while the increasing [Formula: see text], the other correlated parameter, indicated that the chain entanglement was enhanced, which was corresponded to the improvement of high molecular weight component. The foaming results revealed that the recycled LDPE had finer cellular structure and higher nucleation density. Moreover, despite adding PP and active CaCO3 to simulate the impurities, the foamability loss of these mixed samples was well restricted and still valuable. Recycled LDPE is instead better than its corresponding virgin one in foaming performance, exhibiting the application potential for further developments.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139809265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fumed nanosilica as filler for semi-rigid palm oil-based polyurethane foam: Mechanical, material, thermal, and fire response 气相纳米二氧化硅作为半硬质棕榈油基聚氨酯泡沫塑料的填料:机械、材料、热和火灾响应
IF 1.6 4区 医学
Cellular Polymers Pub Date : 2024-02-01 DOI: 10.1177/02624893241232129
M. H. Dzulkifli, R. A. Majid, Siti Khairunisah Ghazali, Mohd Yazid Yahya
{"title":"Fumed nanosilica as filler for semi-rigid palm oil-based polyurethane foam: Mechanical, material, thermal, and fire response","authors":"M. H. Dzulkifli, R. A. Majid, Siti Khairunisah Ghazali, Mohd Yazid Yahya","doi":"10.1177/02624893241232129","DOIUrl":"https://doi.org/10.1177/02624893241232129","url":null,"abstract":"Incorporating nano-sized fillers into bio-based polyurethane (PU) foams typically enhances their properties. In present investigation, palm oil-based PU foams are fabricated with varied loadings (0 to 5 wt%) of fumed nanosilica. The foams are then characterized for their fire-retardancy, thermal stability, foam morphology, and also mechanical properties. Marginal improvement in Limiting Oxygen Index (LOI) values, as well as failure to be rated under UL-94 Vertical Combustion Test indicate limited potential of fumed silica in improving flammability of organic polymeric foams; suggesting exorbitant amount is required for any distinguishable effect to manifest. Interestingly; results from Thermogravimetry Analysis (TGA) shows marked improvements in terms of char residue with more than seven-fold increase at 5 wt% filler loading, possibly owed to the inert filler nature of fumed nanosilica forming a char barrier and acting as fuel diluent. Filled PU foams displayed an increased open-cell content, likely because the filler functioned as a cell opener. Removing the influence of density, the normalized compressive properties showed notable improvement up until a certain loading, which could be credited to the increased stiffness imparted by the filler itself. The results portray the potential of fumed nanosilica as filler for bio-based PU foams, offering enhanced thermal stability and limited fire retardancy.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139816975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fumed nanosilica as filler for semi-rigid palm oil-based polyurethane foam: Mechanical, material, thermal, and fire response 气相纳米二氧化硅作为半硬质棕榈油基聚氨酯泡沫塑料的填料:机械、材料、热和火灾响应
IF 1.6 4区 医学
Cellular Polymers Pub Date : 2024-02-01 DOI: 10.1177/02624893241232129
M. H. Dzulkifli, R. A. Majid, Siti Khairunisah Ghazali, Mohd Yazid Yahya
{"title":"Fumed nanosilica as filler for semi-rigid palm oil-based polyurethane foam: Mechanical, material, thermal, and fire response","authors":"M. H. Dzulkifli, R. A. Majid, Siti Khairunisah Ghazali, Mohd Yazid Yahya","doi":"10.1177/02624893241232129","DOIUrl":"https://doi.org/10.1177/02624893241232129","url":null,"abstract":"Incorporating nano-sized fillers into bio-based polyurethane (PU) foams typically enhances their properties. In present investigation, palm oil-based PU foams are fabricated with varied loadings (0 to 5 wt%) of fumed nanosilica. The foams are then characterized for their fire-retardancy, thermal stability, foam morphology, and also mechanical properties. Marginal improvement in Limiting Oxygen Index (LOI) values, as well as failure to be rated under UL-94 Vertical Combustion Test indicate limited potential of fumed silica in improving flammability of organic polymeric foams; suggesting exorbitant amount is required for any distinguishable effect to manifest. Interestingly; results from Thermogravimetry Analysis (TGA) shows marked improvements in terms of char residue with more than seven-fold increase at 5 wt% filler loading, possibly owed to the inert filler nature of fumed nanosilica forming a char barrier and acting as fuel diluent. Filled PU foams displayed an increased open-cell content, likely because the filler functioned as a cell opener. Removing the influence of density, the normalized compressive properties showed notable improvement up until a certain loading, which could be credited to the increased stiffness imparted by the filler itself. The results portray the potential of fumed nanosilica as filler for bio-based PU foams, offering enhanced thermal stability and limited fire retardancy.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139876560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved thermal and mechanical properties of water-blown rigid polyurethane foams synthesized with renewable castor oil and toluene diisocyanate-based trifunctional polyols 用可再生蓖麻油和甲苯二异氰酸酯基三功能多元醇合成的水吹硬质聚氨酯泡沫的热性能和力学性能的改善
4区 医学
Cellular Polymers Pub Date : 2023-09-01 DOI: 10.1177/02624893231204620
Vennila Srinivasan, Sumalatha Vasam, Sankar Govindarajan
{"title":"Improved thermal and mechanical properties of water-blown rigid polyurethane foams synthesized with renewable castor oil and toluene diisocyanate-based trifunctional polyols","authors":"Vennila Srinivasan, Sumalatha Vasam, Sankar Govindarajan","doi":"10.1177/02624893231204620","DOIUrl":"https://doi.org/10.1177/02624893231204620","url":null,"abstract":"In this work, glycerol was chemically modified into novel toluene diisocyanate (TDI) based trifunctional polyol (NTP) by a two step process, involving the reaction of TDI with glycerol to form an isocyanate-terminated pre-polymer, followed by the reaction with glycol. A thermal and mechanical property of water-blown rigid polyurethane foam (WB-PUF) was enhanced by the partial substitution (30 & 50 wt%) of castor oil with glycerol or synthesized NTP. The effects of glycerol content and NTP on the WB-PUF properties were investigated using various characterization techniques including ATR-FTIR, TGA, SEM, compression test, and Shore-A hardness test. Notably, the introduction of NTP substitution into the formulation of WB-PUF foams had beneficial impact on the structure of materials enhancing foam density from 77 kg/m 3 to 117 kg/m 3 and also exhibited superior thermal and mechanical properties compared to those with glycerol and unmodified foams. Shore A hardness and compression strength of those foams ranged from 50 to 69.5 °Sh A and 1.88-3.28 MPa, respectively. These findings suggest potential applications of the modified WB-PUF in areas such as rigid tissue engineering.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135588399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detailed investigation on the insulation and permeability characteristics of rigid polyurethane foam loaded with micron-sized Turkey feather powder depending on the free volume change 微米级火鸡羽毛粉加载硬质聚氨酯泡沫材料的保温渗透特性随自由体积变化的详细研究
4区 医学
Cellular Polymers Pub Date : 2023-09-01 DOI: 10.1177/02624893231204773
Ugur SOYKAN, Sedat CETIN, Ugur YAHSI
{"title":"Detailed investigation on the insulation and permeability characteristics of rigid polyurethane foam loaded with micron-sized Turkey feather powder depending on the free volume change","authors":"Ugur SOYKAN, Sedat CETIN, Ugur YAHSI","doi":"10.1177/02624893231204773","DOIUrl":"https://doi.org/10.1177/02624893231204773","url":null,"abstract":"This study brokes new ground to understand the insulation and permeability performances of rigid polyurethane foams (RPUFs) containing the different contents of micron-sized turkey feather powders (TFPs) depending on the free volume change for the first time. The effects of TFPs loading on the RPUFs were investigated by the examination of their structural and chemical features (particle size and ATR-FTIR analyses), free volume property (PALS analysis), insulation features (thermal conductivity and sound absorption tests), permeability performance (air and water vapor permeability tests) and cellular topology (SEM). PALS analysis results revealed that the addition of TFPs into the foams led to the sharp decrease in all free volume parameters since TFPs caused the formation of the disordered cells by occupying the holes in the matrix. Furthermore, both thermal conductivity and acoustic performance of the resulting foams get worse when compared to unfilled RPUF. This results were attributed to the formation of thinner and weaker cells during polymerization, reduction in the amount of CO 2 inside the cells, enhancement in the solid-phase level in the matrix due to the increasing of volumetric density. Additionally, the foam samples with high content of TFPs showed considerably lower air and water vapor permeabilities when compared to neat RPUFs due to the dominant hydrophobic character of the keratin and reduction in the degree of vacancies in the matrix. SEM analysis also revealed that TFPs showed good compatibility with RPUF, but the distorted and irregular shaped cellular morphology was obtained at high contents.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134995303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信