{"title":"钠蒙脱土纳米粘土对棕榈油基硬质水吹聚氨酯泡沫材料的可燃性、热稳定性、形态和力学性能的影响","authors":"M. H. Dzulkifli, R. A. Majid, M. Yahya","doi":"10.1177/02624893231193499","DOIUrl":null,"url":null,"abstract":"This paper presents the experimental works on rigid palm oil-based polyurethane (PU) foam reinforced with sodium-montmorillonite (Na-MMT). Filler loading was varied between 1 and 10 wt %., and the obtained foam was characterized for its combustibility, morphology, thermal stability, and mechanical response. Exfoliated clay microstructure was exhibited at lower Na-MMT loadings. Addition of nanoclay into the PU foam failed to impart any discernable improvement with regards to its flammability, believed due to stronger influence of low-functionality palm oil polyol used. Apparent improvement in thermal stability was observed at low clay amounts. Foam with finer cell size was obtained in the presence of Na-MMT, however only until a certain loading limit. Compressive strength generally increases with increasing clay content, but after 3 wt % the property deteriorated. Peculiarly, compressive strength rose again at 5 wt % and 6 wt % – postulated due to additional load-bearing effect of ‘integral skin’ – before plummeting back again beyond this value.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of sodium-montmorillonite nanoclay on flammability, thermal stability, morphology, and mechanical properties of rigid water-blown palm oil-based polyurethane foam\",\"authors\":\"M. H. Dzulkifli, R. A. Majid, M. Yahya\",\"doi\":\"10.1177/02624893231193499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the experimental works on rigid palm oil-based polyurethane (PU) foam reinforced with sodium-montmorillonite (Na-MMT). Filler loading was varied between 1 and 10 wt %., and the obtained foam was characterized for its combustibility, morphology, thermal stability, and mechanical response. Exfoliated clay microstructure was exhibited at lower Na-MMT loadings. Addition of nanoclay into the PU foam failed to impart any discernable improvement with regards to its flammability, believed due to stronger influence of low-functionality palm oil polyol used. Apparent improvement in thermal stability was observed at low clay amounts. Foam with finer cell size was obtained in the presence of Na-MMT, however only until a certain loading limit. Compressive strength generally increases with increasing clay content, but after 3 wt % the property deteriorated. Peculiarly, compressive strength rose again at 5 wt % and 6 wt % – postulated due to additional load-bearing effect of ‘integral skin’ – before plummeting back again beyond this value.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/02624893231193499\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893231193499","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of sodium-montmorillonite nanoclay on flammability, thermal stability, morphology, and mechanical properties of rigid water-blown palm oil-based polyurethane foam
This paper presents the experimental works on rigid palm oil-based polyurethane (PU) foam reinforced with sodium-montmorillonite (Na-MMT). Filler loading was varied between 1 and 10 wt %., and the obtained foam was characterized for its combustibility, morphology, thermal stability, and mechanical response. Exfoliated clay microstructure was exhibited at lower Na-MMT loadings. Addition of nanoclay into the PU foam failed to impart any discernable improvement with regards to its flammability, believed due to stronger influence of low-functionality palm oil polyol used. Apparent improvement in thermal stability was observed at low clay amounts. Foam with finer cell size was obtained in the presence of Na-MMT, however only until a certain loading limit. Compressive strength generally increases with increasing clay content, but after 3 wt % the property deteriorated. Peculiarly, compressive strength rose again at 5 wt % and 6 wt % – postulated due to additional load-bearing effect of ‘integral skin’ – before plummeting back again beyond this value.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.