M. E. Ergun, E. Ozen, N. Yildirim, Berk Dalkilic, Ergun Baysal
{"title":"生物聚合物增强聚乙酸乙烯酯泡沫的力学和热性能","authors":"M. E. Ergun, E. Ozen, N. Yildirim, Berk Dalkilic, Ergun Baysal","doi":"10.1177/02624893231193501","DOIUrl":null,"url":null,"abstract":"The study developed and designed polyvinyl acetate (PVAc) foams using advanced freeze-drying technology, which exhibited good heat-insulating ability, flame retardancy, and mechanical properties. Different combinations of bleach kraft pulp, water-soluble chitosan, and zinc borate were used to reinforce the foams. The foams exhibited desirable compression and flexural properties, with compression strength and compression modulus ranging from 0.01 MPa to 0.08 MPa and 0.05 MPa to 0.29 MPa, respectively, while flexural strength and flexural modulus ranged from 0.12 MPa to 5.37 MPa and 9.86 MPa to 260,85 MPa, respectively. The use of zinc borate as a reinforcement resulted in improved thermal properties and reduced mass loss at 600°C by 20.69%. Thermal conductivity tests indicated that the foams had low thermal conductivity values ranging from 0.037 W/mK to 0.074 W/mK. The foams with zinc borate (60 g/L) and high molecular weight water-soluble chitosan (70 g/L) reinforcement exhibited high limiting oxygen index (LOI) of 28.72%. Overall, the results suggest that the PVAc foams could serve as a promising sustainable alternative in thermal insulation and construction fields.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanical and thermal properties of polyvinyl acetate foams reinforced with biopolymers\",\"authors\":\"M. E. Ergun, E. Ozen, N. Yildirim, Berk Dalkilic, Ergun Baysal\",\"doi\":\"10.1177/02624893231193501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study developed and designed polyvinyl acetate (PVAc) foams using advanced freeze-drying technology, which exhibited good heat-insulating ability, flame retardancy, and mechanical properties. Different combinations of bleach kraft pulp, water-soluble chitosan, and zinc borate were used to reinforce the foams. The foams exhibited desirable compression and flexural properties, with compression strength and compression modulus ranging from 0.01 MPa to 0.08 MPa and 0.05 MPa to 0.29 MPa, respectively, while flexural strength and flexural modulus ranged from 0.12 MPa to 5.37 MPa and 9.86 MPa to 260,85 MPa, respectively. The use of zinc borate as a reinforcement resulted in improved thermal properties and reduced mass loss at 600°C by 20.69%. Thermal conductivity tests indicated that the foams had low thermal conductivity values ranging from 0.037 W/mK to 0.074 W/mK. The foams with zinc borate (60 g/L) and high molecular weight water-soluble chitosan (70 g/L) reinforcement exhibited high limiting oxygen index (LOI) of 28.72%. Overall, the results suggest that the PVAc foams could serve as a promising sustainable alternative in thermal insulation and construction fields.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/02624893231193501\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893231193501","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical and thermal properties of polyvinyl acetate foams reinforced with biopolymers
The study developed and designed polyvinyl acetate (PVAc) foams using advanced freeze-drying technology, which exhibited good heat-insulating ability, flame retardancy, and mechanical properties. Different combinations of bleach kraft pulp, water-soluble chitosan, and zinc borate were used to reinforce the foams. The foams exhibited desirable compression and flexural properties, with compression strength and compression modulus ranging from 0.01 MPa to 0.08 MPa and 0.05 MPa to 0.29 MPa, respectively, while flexural strength and flexural modulus ranged from 0.12 MPa to 5.37 MPa and 9.86 MPa to 260,85 MPa, respectively. The use of zinc borate as a reinforcement resulted in improved thermal properties and reduced mass loss at 600°C by 20.69%. Thermal conductivity tests indicated that the foams had low thermal conductivity values ranging from 0.037 W/mK to 0.074 W/mK. The foams with zinc borate (60 g/L) and high molecular weight water-soluble chitosan (70 g/L) reinforcement exhibited high limiting oxygen index (LOI) of 28.72%. Overall, the results suggest that the PVAc foams could serve as a promising sustainable alternative in thermal insulation and construction fields.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.