Organic Chemistry Frontiers最新文献

筛选
英文 中文
Rhodium-Catalyzed [3 + 2] Cycloaddition of in situ Generated Nitrile Ylides with Alkenes: A Route to Quaternary 2-Trifluoromethyl-1-Pyrrolines 铑催化的原位生成腈酰与烯的[3 + 2]环加成反应:获得季 2-三氟甲基-1-吡咯烷的途径
IF 5.4 1区 化学
Organic Chemistry Frontiers Pub Date : 2024-12-17 DOI: 10.1039/d4qo01986e
Caicai He, Linxuan Li, Shuang Li, Hongzhu Chen, Hongru Zhang, Yong Wu, Xiaolong Zhang, Paramasivam Sivaguru, Karunanidhi Murali, Xihe Bi
{"title":"Rhodium-Catalyzed [3 + 2] Cycloaddition of in situ Generated Nitrile Ylides with Alkenes: A Route to Quaternary 2-Trifluoromethyl-1-Pyrrolines","authors":"Caicai He, Linxuan Li, Shuang Li, Hongzhu Chen, Hongru Zhang, Yong Wu, Xiaolong Zhang, Paramasivam Sivaguru, Karunanidhi Murali, Xihe Bi","doi":"10.1039/d4qo01986e","DOIUrl":"https://doi.org/10.1039/d4qo01986e","url":null,"abstract":"Trifluoromethylated heterocycles with a C−CF3 stereogenic center are prevalent scaffolds in many bioactive small molecules and pharmaceutical and agrochemical libraries. However, efficient methods for the construction of 2-trifluoromethyl-1-pyrroline scaffolds have remained elusive. Here we report the first rhodium-catalyzed three-component reaction of α-trifluoromethyl-N-triftosylhydrazones with nitriles and alkenes, providing rapid access to 2-trifluoromethyl-1-pyrrolines with a quaternary stereocenter from readily available starting materials. This method features mild reaction conditions, good functional group tolerance, high yields, and excellent diastereoselectivity. The synthetic utility has been further demonstrated by late-stage diversification of five complex bioactive molecules, scale-up reactions, and diverse post-synthetic transformations, yielding valuable trifluoromethylated pyrrolidine and pyrroline scaffolds. DFT calculation elucidates the origins of chemo- and diastereoselectivity and the mechanism that proceeds via the key nitrile ylide intermediate.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"253 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ag-Catalyzed and Difluorocarbene-Promoted Amide-Ylide Rearrangement: Synthesis of 3-Salicyloylpyridines 银催化和二氟化碳促进的酰胺-酰亚胺重排:合成 3-水杨酰吡啶
IF 5.4 1区 化学
Organic Chemistry Frontiers Pub Date : 2024-12-17 DOI: 10.1039/d4qo01961j
Xu Yuan, Tong Zhou, Qiaoqiao Wang, Yu Chen, Xiaohong Cheng, Yi Jin
{"title":"Ag-Catalyzed and Difluorocarbene-Promoted Amide-Ylide Rearrangement: Synthesis of 3-Salicyloylpyridines","authors":"Xu Yuan, Tong Zhou, Qiaoqiao Wang, Yu Chen, Xiaohong Cheng, Yi Jin","doi":"10.1039/d4qo01961j","DOIUrl":"https://doi.org/10.1039/d4qo01961j","url":null,"abstract":"Herein, we report an Ag-catalyzed and difluorocarbene-promoted amide-ylide rearrangement strategy. This strategy utilizes an unconventional transformation between difluorocarbene and amide functionalities to successfully synthesize 3-salicyloylpyridines. Preliminary mechanistic studies suggest that the reaction initially involves the coordination of the amide with the metal, followed by a reaction with difluorocarbene to form the RNCF2H intermediate, which then facilitates the formation of the N-ylide intermediate, a crucial step for the synthesis of the target compound. Subsequently, selective C–N bond cleavage is followed by a rearrangement and elimination of formaldehyde. This rearrangement strategy demonstrates broad substrate applicability. Under identical reaction conditions, it enables the reaction of chromones with various β-ketones (such as 1,3-dicarbonyl compounds, β-keto esters, acetophenone, acetone, pentanone, and 2-Bromoacetophenone) to produce 3-salicyloylpyridines (>47 examples, up to 91% yield), showing excellent efficiency and functional group tolerance.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"18 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Access to Fluorinated Dienes through Hydrofluorination of 2-En-4-ynoates 通过2-烯-4-炔酸酯的氢氟化获得氟化二烯
IF 5.4 1区 化学
Organic Chemistry Frontiers Pub Date : 2024-12-17 DOI: 10.1039/d4qo02049a
Yue Xia, Aaron D. Charlack, Rui Guo, Nicholas W. Wade, Yiming Wang
{"title":"Access to Fluorinated Dienes through Hydrofluorination of 2-En-4-ynoates","authors":"Yue Xia, Aaron D. Charlack, Rui Guo, Nicholas W. Wade, Yiming Wang","doi":"10.1039/d4qo02049a","DOIUrl":"https://doi.org/10.1039/d4qo02049a","url":null,"abstract":"The hydrofluorination of enynes has been developed for the synthesis of fluorinated dienes. Using a pyridinium tetrafluoroborate salt that is easily prepared on large scale, this approach enabled the direct conversion of enynes to fluorinated diene targets through a vinyl cation mediated process. This approach was applied to a range of aryl-substituted enyne esters to deliver the (Z)-configured products with high levels of stereo- and regioselectivity. Mechanistic studies were conducted to provide insights into the stereochemical outcome and reaction efficiency under different reaction conditions.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"21 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modular Synthesis of β-Oxygen-containing Sulfones from Alkenes through Hexatungstate-catalyzed Cascade Hydroxysulfenylation/ Selective Oxidation 六通酸催化级联羟基磺酰化/选择性氧化烯烃模块化合成β-含氧砜
IF 5.4 1区 化学
Organic Chemistry Frontiers Pub Date : 2024-12-14 DOI: 10.1039/d4qo02151g
Xianghua Zeng, Jiaoxiong Li, Zhibin Zhou, Yongge Wei
{"title":"Modular Synthesis of β-Oxygen-containing Sulfones from Alkenes through Hexatungstate-catalyzed Cascade Hydroxysulfenylation/ Selective Oxidation","authors":"Xianghua Zeng, Jiaoxiong Li, Zhibin Zhou, Yongge Wei","doi":"10.1039/d4qo02151g","DOIUrl":"https://doi.org/10.1039/d4qo02151g","url":null,"abstract":"β-Oxygen-containing sulfones are versatile building blocks in pharmaceuticals and chemical industry. Despite notable advancements in reportedmethods, a sustainable and general catalytic method for the preparation of β-oxygen-containing sulfones remains elusive due to the inherent reactivity disparities and notorious metal-catalyst-poisoning capability of sulfur nucleophiles. Here, we present a distinct multifunctional hexatungstate catalytic strategy for the synthesis of β-hydroxy sulfones and β‑keto sulfones through a sequential hydroxysulfenylation of alkenes/selective oxidation process, utilizing a commerically available thiol and green hydrogen peroxide as the ‘oxy-sulfonylation reagent’. This method not only offers a practical route for delivering functionalized sulfones from readily available chemicals but also showcases its versatility through late-stage oxysulfonylation of complex substrates and concise syntheses of bioactive molecules. Moreover, this modular methodology features hydroperoxide reductant free, mild reaction conditions, water as the sole byproduct and new mechanism.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"22 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanochemical Decarbonylative Transformation of Amide Group to OCF3 and CF3 Functionalities under Ruthenium Catalysis 钌催化下酰胺基向 OCF3 和 CF3 官能团的机械化学脱羰基转化
IF 5.4 1区 化学
Organic Chemistry Frontiers Pub Date : 2024-12-14 DOI: 10.1039/d4qo01946f
Satenik Mkrtchyan, Vishal B. Purohit, Oleksandr Shalimov, Michał Jakubczyk, Gabriela Addová, Juraj Filo, Barbora Benicka, Ronak V. Prajapati, Vaibhav D. Prajapati, Jiří Zapletal, Yevhen Karpun, Vitaliy Yepishev, Jarmila Kmeťová, Elena Kupcová, Viktor Iaroshenko
{"title":"Mechanochemical Decarbonylative Transformation of Amide Group to OCF3 and CF3 Functionalities under Ruthenium Catalysis","authors":"Satenik Mkrtchyan, Vishal B. Purohit, Oleksandr Shalimov, Michał Jakubczyk, Gabriela Addová, Juraj Filo, Barbora Benicka, Ronak V. Prajapati, Vaibhav D. Prajapati, Jiří Zapletal, Yevhen Karpun, Vitaliy Yepishev, Jarmila Kmeťová, Elena Kupcová, Viktor Iaroshenko","doi":"10.1039/d4qo01946f","DOIUrl":"https://doi.org/10.1039/d4qo01946f","url":null,"abstract":"A novel strategy has been introduced for the selective activation of N–C(O) moiety in primary aromatic amides through the utilization of pyrylium tetrafluoroborate under mechanochemical conditions, where the amide group undergoes subsequent activation and selectively substituted with the CF3 or OCF3 functionality. The scope of the present protocol includes selective transformation of diversely substituted aromatic amides to the respective trifluoromethyl and trifluoromethoxy arenes via mechanochemically induced deaminative functionalization under the synergy of a piezoelectric material barium titanate (BaTiO3), and ruthenium-catalysis. The presented mechanochemical approach unlocks new chemical spaces in pharmaceutical industries with a perspective on PASE (pot, atom, and step economy) synthesis.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"24 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stereocontrolled desymmetrization of 2,5-cyclohexadienones via organocatalytic domino sulfa-1,6-/1,4-addition or sulfa-1,6- /1,4-/sulfa-1,4-addition reactions 通过有机催化多米诺磺胺-1,6-/1,4-加成或磺胺-1,6-/1,4-/磺胺-1,4-加成反应实现 2,5-Cyclohexadienones 的立体可控非对称化
IF 5.4 1区 化学
Organic Chemistry Frontiers Pub Date : 2024-12-14 DOI: 10.1039/d4qo02097a
Vanisha Sodhi, Deepak Sharma, Manisha Sharma, Pankaj Chauhan
{"title":"Stereocontrolled desymmetrization of 2,5-cyclohexadienones via organocatalytic domino sulfa-1,6-/1,4-addition or sulfa-1,6- /1,4-/sulfa-1,4-addition reactions","authors":"Vanisha Sodhi, Deepak Sharma, Manisha Sharma, Pankaj Chauhan","doi":"10.1039/d4qo02097a","DOIUrl":"https://doi.org/10.1039/d4qo02097a","url":null,"abstract":"We have developed a desymmetrization of 2,5-cyclohexadienones tethered 3-cyano-4-styrylcoumarins via the amino-squaramide catalyzed initial regio-/enantio-selective sulfa-1,6-addition to the 3-cyano-4-styrylcoumarin moiety of the substrate, followed by an intramolecular vinylogous 1,4-addition to the dienone portion. An additional sulfa-Michael addition was observed when the thiols were taken in excess to create an additional stereogenic center. With our divergent approach, the two unique classes of hydrophenanthrene skeletons have been synthesized as single diastereoisomers in good to excellent yields and enantioselectivities (up to >99.5:0.5 er).","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"336 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclizative Dearomative Rearrangement of Pyridines with Isocyanates 吡啶与异氰酸酯的环化脱芳重排
IF 5.4 1区 化学
Organic Chemistry Frontiers Pub Date : 2024-12-14 DOI: 10.1039/d4qo02111h
Xing-Zi Li, Fang-Zhou Li, Zi-Qi Wang, Hua Wu
{"title":"Cyclizative Dearomative Rearrangement of Pyridines with Isocyanates","authors":"Xing-Zi Li, Fang-Zhou Li, Zi-Qi Wang, Hua Wu","doi":"10.1039/d4qo02111h","DOIUrl":"https://doi.org/10.1039/d4qo02111h","url":null,"abstract":"Dearomatizationof pyridines is a robust synthetic method to access aza-heterocycles. Simultaneously, intermolecular cyclizative rearrangement is a recently developed new strategy toward efficiently constructing tetrasubstituted carbons. Here, we show that an effective integration of dearomatization approach with strategic cyclizative rearrangement render 2-acyl-substituted pyridines and their analogues with common isocyanates to undergo a tandem [3+2] heteroannulation followed by an extensive 1,2-carbon shift, thus providing a straightforward access to readily functionalized bicyclohydantoins. Based on the promotion of organophosphorus, different types of migrating groups, such as ester, amide, aryl and trifluoromethyl groups, are all well-tolerated in the same reaction for the first time.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"1 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tf2O-Induced Selective 1,3-Transposition/Cyclization of Ynones in DMF tf20诱导DMF中炔酮选择性1,3转位/环化
IF 5.4 1区 化学
Organic Chemistry Frontiers Pub Date : 2024-12-14 DOI: 10.1039/d4qo01890g
Huilin Lan, Wenting Liu, Wen Liu, Jiajian Peng, Ying Bai, Xinxin Shao
{"title":"Tf2O-Induced Selective 1,3-Transposition/Cyclization of Ynones in DMF","authors":"Huilin Lan, Wenting Liu, Wen Liu, Jiajian Peng, Ying Bai, Xinxin Shao","doi":"10.1039/d4qo01890g","DOIUrl":"https://doi.org/10.1039/d4qo01890g","url":null,"abstract":"A chemo and regio-selective system for activating C=O and S=O bonds under transition metal-free conditions is described. Thus, a Tf2O-mediated 1,3-transposition of ynones in DMF has been developed, providing a versatile pathway for the downstream synthesis of diverse five- and seven-membered heterocycles. Furthermore, the catalytic migration of carbonyl functionality conjugated to an alkyne unit is investigated. In the presence of sulfoxide, which undergoes a Pummerer reaction, the in-situ generation of highly reactive sulfonium salts enables efficient access to a wide range of sulfur-containing annulated scaffolds. Importantly, 3-SCF2D chromones were obtained in high yields and D-incorporation. This divergent methodology offers a versatile platform for maximizing molecular complexity and diversity.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"10 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifuran- and bithiophene-fused 4,6-dihydro-1,2,7-oxadiborepins as building blocks for conjugated copolymers biuran -和bi噻吩-熔融4,6-二氢-1,2,7-氧二萜作为共轭共聚物的构建单元
IF 5.4 1区 化学
Organic Chemistry Frontiers Pub Date : 2024-12-13 DOI: 10.1039/d4qo01964d
Jonas Bachmann, Andreas Drichel, Jonas Klopf, Abhishek Koner, Adam Slabon, Holger Helten
{"title":"Bifuran- and bithiophene-fused 4,6-dihydro-1,2,7-oxadiborepins as building blocks for conjugated copolymers","authors":"Jonas Bachmann, Andreas Drichel, Jonas Klopf, Abhishek Koner, Adam Slabon, Holger Helten","doi":"10.1039/d4qo01964d","DOIUrl":"https://doi.org/10.1039/d4qo01964d","url":null,"abstract":"The use of dithieno- (DTDB) and difuro-4,6-dihydro-1,2,7-oxadiborepins (DFDB) as components of conjugated copolymers is demonstrated. Building upon our recently developed protocol for the modular synthesis of 5,5’-dibrominated difuro-4,6-dihydro-1,2,7-oxa- and azadiborepins, we devised a scalable route to the corresponding 5,5’-dibrominated and 5,5’-distannylated DTDB derivatives, which serve as monomers for subsequent polymerizations. Combining both the difunctionalized DTDB- and the DFDB-based monomers with electron-rich benzodithiophene (BDT) and electron-poor diketopyrrolopyrrole (DPP) building blocks, respectively, gave four new copolymers, which are well-soluble and fully air- and moisture-stable. They show broad absorptions over the visible spectral range – with the bands of the DPP-containing copolymers extending into the near-IR region. DFT calculations give further insights into the electronics of the copolymers. Photoelectrochemical measurements revealed that three of the new copolymers exhibit p-type while one of them exhibits n-type semiconducting behavior.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"15 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Palladium-Catalyzed Three-Component Annulation Reaction Involving Multiple C─H Activation 钯催化多重C─H活化的三组分环化反应
IF 5.4 1区 化学
Organic Chemistry Frontiers Pub Date : 2024-12-13 DOI: 10.1039/d4qo01857e
Shuai Yang, Xiang Zuo, Yanghui Zhang
{"title":"Palladium-Catalyzed Three-Component Annulation Reaction Involving Multiple C─H Activation","authors":"Shuai Yang, Xiang Zuo, Yanghui Zhang","doi":"10.1039/d4qo01857e","DOIUrl":"https://doi.org/10.1039/d4qo01857e","url":null,"abstract":"The Pd-catalyzed ring-forming reaction via multiple C─H activation provides an efficient strategy to access cyclic ring systems. The current reactions are primarily restricted to single and two-component reactions. Herein, we report a ring-forming reaction via palladium-catalyzed three-component multiple C─H activation. Using TsOMe as the methylating reagent, aryl iodides undergo maleimide-relayed C─H methylation. Subsequent cyclization via C(sp3)─H activation forms succinimide-fused tricyclic scaffolds. Depending on aryl iodides, the reaction involves dual or triple C─H activation to form two or three new C─C bonds. The reaction represents a new strategy for C─H methylation and offer a new synthetic method using simple and readily available substrates for succinimide-fused tricyclic scaffolds, which are crucial structural motifs found widely in organic compounds with diverse biological activities.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"21 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信