Ju Eun Son , Sung Gyu Im , Joon-Hyuk Yim , Mino Yang , Jae-won Lee
{"title":"Enhanced cycling stability of silicon electrode for lithium-ion batteries by dual hydrogen bonding mediated by carboxylated carbon nanotube","authors":"Ju Eun Son , Sung Gyu Im , Joon-Hyuk Yim , Mino Yang , Jae-won Lee","doi":"10.1016/j.ceja.2024.100673","DOIUrl":"10.1016/j.ceja.2024.100673","url":null,"abstract":"<div><div>Carbon nanotubes (CNTs) are being used as high-performance conductive agents for fast electron transport and effective suppression of volume change in silicon (Si) electrode. However, utilization of CNTs has significant challenges, including poor dispersibility and weak interaction with Si particles. Herein, carboxylated CNTs (CNT-COOH) are employed as a mediator to form dual hydrogen bonds with the tannic acid-coated Si particles (Si@TA) and carboxymethyl cellulose (CMC) binder, through which all the constituents (active material, conductive agent, and binder) comprising the electrode are strongly connected. Also, CNT-COOH strongly attaches to Si@TA via π-π conjugation. Furthermore, the TA-coating layer serves as a protective layer from the electrolyte. As a result, the Si@TA/CNT-COOH composite electrode shows excellent cycling stability delivering a discharge-specific capacity of 1287 mAh g<sup>-1</sup> after 200 cycles at 2 A g<sup>-1</sup> and retains 1916 mAh g<sup>-1</sup> even at high current density of 10 A g<sup>-1</sup>. The structural integrity of the Si@TA/CNT-COOH electrode is also confirmed by less deformation and thickness change after cycling.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100673"},"PeriodicalIF":5.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microwave-assisted acid and alkali pretreatment of Napier grass for enhanced biohydrogen production and integrated biorefinery potential","authors":"Umarin Jomnonkhaow , Tsuyoshi Imai , Alissara Reungsang","doi":"10.1016/j.ceja.2024.100672","DOIUrl":"10.1016/j.ceja.2024.100672","url":null,"abstract":"<div><div>Napier grass, a promising lignocellulosic energy crop, presents a complex composition that limits its bioconversion into fermentable products. To address this challenge, we applied microwave (MW) pretreatment assisted by acid and alkali, using varying chemical concentrations (0.5–1 % w/v) and pretreatment times (3–10 min). Acid-catalyzed MW pretreatment achieved a maximal hemicellulose removal of 69.8 %, while alkali-catalyzed MW pretreatment resulted in significant lignin removal of 65.5 %. Without chemical catalysis, the pretreated hydrolysate significantly increased hydrogen yield to 38.0 ± 2.9 mL H<sub>2</sub>/g volatile solid (VS), five times greater than that obtained from untreated biomass. Hydrogen yield was further enhanced when the MW-pretreated solid underwent simultaneous saccharification and fermentation. The highest hydrogen yield of 89.2 ± 7.2 mL H<sub>2</sub>/g VS was achieved from alkali-catalyzed MW pretreated solid (0.5 % w/v NaOH, 5 min), with a chemical oxygen demand (COD) solubilization of 62.6 %. Increasing the NaOH concentration to 1 % (w/v) slightly decreased hydrogen yield but significantly increased COD solubilization to 85.8 %. The high carbohydrate content facilitated rapid cellulase hydrolysis, producing and accumulating a high concentration of fermentable sugars. However, this accumulation subsequently led to a shift towards lactic acid formation. The improved hydrogen yield and increased COD solubilization, along with the shift towards lactic acid production, suggest the possibility of optimizing this process for simultaneous production of multiple valuable products in an integrated biorefinery approach, potentially enhancing the economic viability of biomass conversion.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100672"},"PeriodicalIF":5.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Innovative solar-assisted direct contact membrane distillation system: Dynamic modeling and performance analysis","authors":"Mishal Alsehli","doi":"10.1016/j.ceja.2024.100671","DOIUrl":"10.1016/j.ceja.2024.100671","url":null,"abstract":"<div><div>The study presents an innovative solar-assisted dual-tank direct contact membrane distillation (DCMD) system designed to enhance the operational stability and efficiency of solar-powered desalination. The proposed system integrates a dual thermal storage tank configuration, allowing for continuous operation by alternating between two tanks that store pre-heated water, thereby mitigating the impact of solar energy fluctuations. The dynamic modeling approach used in this study predicts the system's performance under varying solar conditions, focusing on key parameters such as permeate flux, evaporation efficiency, and specific thermal energy consumption. The simulation results show that the system achieves an average permeate flux of 14.4 L/h m² and a thermal efficiency of 53.3 % at a hot water temperature of 60 °C, with a corresponding average specific thermal energy consumption of 1567 kWh/m³. These findings highlight a substantial improvement in both thermal efficiency and water production compared to conventional single-tank systems.</div><div>The dual-tank DCMD system is particularly suited for deployment in remote or arid regions where stable and efficient freshwater production is critical. This research provides a comprehensive analysis of a novel solar-assisted desalination technology, contributing to the advancement of sustainable water resources management by providing a reliable and scalable solution that can maintain high operational efficiency even in remote areas with variable solar conditions.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100671"},"PeriodicalIF":5.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Viggy Wee Gee Tan , Yazan Abuhasheesh , Doris Ying Ying Tang , Yongyu Zhang , Zengling Ma , Lin Chen , Rambabu Krishnamoorthy , Pau Loke Show
{"title":"A critical assessment of ionic liquid-based aqueous biphasic systems for biomolecules extraction and CO2 absorption","authors":"Viggy Wee Gee Tan , Yazan Abuhasheesh , Doris Ying Ying Tang , Yongyu Zhang , Zengling Ma , Lin Chen , Rambabu Krishnamoorthy , Pau Loke Show","doi":"10.1016/j.ceja.2024.100670","DOIUrl":"10.1016/j.ceja.2024.100670","url":null,"abstract":"<div><div>Ionic liquids (ILs) are green designer solvents that have gained research interest in industrial applications, including solvent chemistry, catalysis, and electrochemistry. Recent advances in ionic liquid-based aqueous biphasic systems (IL-ABSs) have broadened their biological applications. This review discusses the state-of-the-art of its biotechnological application in biomolecules recovery and phase separation mechanism. The prospects of ILs as green solvents and their toxicity and applicability in carbon dioxide (CO<sub>2</sub>) capture are discussed. The correlation between the structures and toxicity of ILs is also provided, with a special emphasis on the synthesis of safer ILs. This review examines the significance and techniques in recovering and reusing phase-forming agents such as ILs. The incorporation of machine learning (ML) algorithms to predict the toxicity and CO<sub>2</sub> capture properties, as well as the scaling up of IL-ABSs, is also explored.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"21 ","pages":"Article 100670"},"PeriodicalIF":5.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rogelio A. Léon-García , Ernesto Rojas-Pablos , Jorge L. Mejía-Méndez , Araceli. Sanchez-Martinez , Diego E. Navarro-López , Angélica Lizeth Sánchez-López , Luis Marcelo Lozano , Oscar Ceballos-Sanchez , Edgar R. López-Mena , Gildardo Sanchez-Ante
{"title":"Enhancing photovoltaic cell design with multilayer sequential neural networks: A study on neodymium-doped ZnO nanoparticles","authors":"Rogelio A. Léon-García , Ernesto Rojas-Pablos , Jorge L. Mejía-Méndez , Araceli. Sanchez-Martinez , Diego E. Navarro-López , Angélica Lizeth Sánchez-López , Luis Marcelo Lozano , Oscar Ceballos-Sanchez , Edgar R. López-Mena , Gildardo Sanchez-Ante","doi":"10.1016/j.ceja.2024.100669","DOIUrl":"10.1016/j.ceja.2024.100669","url":null,"abstract":"<div><div>Multilayer sequential neural networks, a powerful machine learning model, demonstrate the ability to learn intricate relationships between input features and desired outputs. This study focuses on employing such models to design photovoltaic cells. Specifically, neodymium (Nd)-doped ZnO nanoparticles (NPs) were utilized as a photoanode for fabricating dye-sensitized solar cells (DSSCs). A natural dye extracted from Spinacia oleracea was employed, while two types of electrolytes, liquid and gel (polyethylene glycol-based), were used for comparative analysis. Extensive material characterization of the photoanode highlights the impact of Nd content on the physicochemical properties of ZnO. Notably, when the doped photoanode and gel electrolyte were combined, a substantial 110% improvement in power conversion efficiency (PCE) was achieved. Building on these findings, the machine learning model in this research accurately predicts the current-voltage (I-V) curve values for such photoanodes, with an impressive accuracy of 98%. Additionally, the model illuminates the significance of variables like crystal distortion, texture coefficient, and doping concentration, underscoring their importance in the context of photovoltaic cell design.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100669"},"PeriodicalIF":5.5,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xianghai Bian , Qiangqiang Wang , Runjia Zhou , Yang Ye , Zhongjian Li
{"title":"Enhancement of H2-water mass transfer using methyl-modified hollow mesoporous silica nanoparticles for efficient microbial CO2 reduction","authors":"Xianghai Bian , Qiangqiang Wang , Runjia Zhou , Yang Ye , Zhongjian Li","doi":"10.1016/j.ceja.2024.100666","DOIUrl":"10.1016/j.ceja.2024.100666","url":null,"abstract":"<div><div>Inorganic-microbial hybrid catalysis is an emerging technology that uses electrical energy to drive microorganisms to reduce CO<sub>2</sub> into high value-added compounds, and it has broad application prospects in CO<sub>2</sub> reduction. However, the low current density (production yield) limits its practical application. Hydrogen-mediated inorganic-microbial hybrid catalysis system can achieve higher current density, but it is limited by low H<sub>2</sub> mass transfer. Here, silica nanoparticles were used to enhance the hydrogen mass transfer for highly efficient CO<sub>2</sub> reduction. Solid silica (SN), mesoporous silica (MSN), hollow mesoporous silica (HMSN), and methyl-modified hollow mesoporous silica (MHMSN) were firstly prepared and tested for the enhancement of hydrogen mass transfer. Of these, MHMSN nanoparticles at a concentration of 0.3 wt% were the best at enhancing gas-liquid mass transfer, the volumetric mass transfer coefficient (K<sub>L</sub>a) and saturated dissolved hydrogen concentration of H<sub>2</sub> are 0.53 min<sup>-1</sup> and 1.81 mg <span>l</span><sup>-1</sup>, respectively. Compared with the control group without added nanoparticles, MHMSN significantly increased the solubility and K<sub>L</sub>a of H<sub>2</sub>. This can be attributed that the addition of MHMSN promoted the detached process of hydrogen bubbles from the electrode surface, which made the diameter of hydrogen bubbles smaller, increased the gas-liquid mass transfer area, and strengthened the mass transfer process of H<sub>2</sub>. Furthermore, it was added to the inorganic-microbial hybrid catalysis system to effectively promote the microbial carbon reduction process, achieving a polyhydroxybutyrate (PHB) yield of up to 700 mg <span>l</span><sup>-1</sup>, and the electron utilization rate and CO<sub>2</sub> conversion rate were 51 % and 58 % higher than the control group, respectively. These results demonstrated that the addition of MHMSN is an effective approach to enhancing the performance of H<sub>2</sub>-mediated inorganic-microbial hybrid catalysis system.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100666"},"PeriodicalIF":5.5,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kamal Asghar , Miguta Faustine Ngulimi , Sion Kim , Bum Kyoung Seo , Changhyun Roh
{"title":"Cobalt recovery from industrial and nuclear waste resources: A review","authors":"Kamal Asghar , Miguta Faustine Ngulimi , Sion Kim , Bum Kyoung Seo , Changhyun Roh","doi":"10.1016/j.ceja.2024.100668","DOIUrl":"10.1016/j.ceja.2024.100668","url":null,"abstract":"<div><div>With the widespread applications of cobalt in energy storage, electronics, electric vehicles, and most importantly, in the production of <sup>60</sup>Co in nuclear industries, its recovery from secondary sources is increasingly important. On the other hand, approximately half of the 440 operating nuclear reactors, across the world, are expected to be retired in the next two decades, creating a significant amount of radioactive waste that poses a serious threat to the ecosystem. But cobalt has low adsorption capacity under low pH conditions, and competitive ions make its recovery difficult. To the best of author's knowledge, the adsorption capacity of cobalt is mostly reported under 500 mgg<sup>-1</sup>. Firstly, this review provides a comprehensive overview of the physicochemical properties of cobalt isotopes. It then presents an in-depth analysis of various separation methods for cobalt from battery waste and nuclear wastewater, including physical-chemical, electrochemical, and biological methods. All techniques are evaluated based on their selectivity, efficiency, scalability, and environmental impact. By comparing state-of-the-art technology, this review aims to address existing gaps and advance our understanding of an efficient cobalt recovery from industrial waste. The review concludes with an overview of the global cobalt market, examining both radioactive and non-radioactive cobalt, and considers the economic implications of cobalt recovery.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100668"},"PeriodicalIF":5.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-valent manganese active sites: Insight into reinforced interaction with sulfonated anthraquinone dye and kinetic adsorption studies over iron-modified cryptomelane","authors":"Quoc-Dat Le , Thanh-Thao Pham-Ngoc , Ngoc-Thien Nguyen , Nhat-Truong Truong , Hai-Nam Tran , Dung Van Nguyen , Tuyet-Mai Tran-Thuy","doi":"10.1016/j.ceja.2024.100665","DOIUrl":"10.1016/j.ceja.2024.100665","url":null,"abstract":"<div><div>This study presents a facial co-precipitation method to enrich low-valent manganese sites for iron-doped cryptomelane. Fourier-transform infrared spectroscopy exhibits a noticeable enhancement of both vibrations at 1041 and 1116 cm<sup>-1</sup> ascribed to Mn<sup>3+</sup>-OH bond over as-prepared materials. X-ray diffraction, scanning electron microscopy, Raman spectroscopy, the temperature-programmed desorption of oxygen and inductively coupled plasma-mass spectrometry results all verify the increase in oxygen vacancies on iron-doped cryptomelane. The vital role of Mn<sup>3+</sup>-OH sites for adsorptive removal of acid blue 62 (AB62) was experimentally evident when adsorption capacity (Q<sub>e</sub>, mg<sub>AB62</sub>/g<sub>adsorbent</sub>) increased from 54 ± 1.3 mg/g (for non-doped cryptomelane) to 161 ± 6.7 mg/g (for Fe-0.15) at initial pH 5.7. The decrease of Q<sub>e</sub> from 313 mg/g (for initial pH 3.70) to 67 mg/g (for initial pH 9.95) over Fe-0.15 suggests protonation in acid media and deprotonation in basic media, reflecting efficient Mn<sup>3+</sup>-OH sites for reinforced interaction with sulfonate groups. The disappearance of sharp bands at 1041 and 1116 cm<sup>-1</sup> after adsorption and the replenishment of a broad band at ∼1250 cm<sup>-1</sup> over Fe-0.15 demonstrate the displacement of sulfonate groups by -OH species (from Mn<sup>3+</sup>-OH sites). Moreover, the deterioration of two stretching modes for O=S=O at 1187 and 1230 cm<sup>-1</sup> after adsorption reveals the formation of a monodentate or bidentate complex. Kinetic studies confirm the compatibility of AB62 chemisorption over Fe-0.15 with the pseudo-second-order kinetic, Elovich, and Langmuir isotherm models. The current findings first support evidences for the AB62 chemisorption on iron-doped cryptomelane and a Fe-0.15-feasible adsorbent for removal of sulfonated anthraquinone dye.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100665"},"PeriodicalIF":5.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A hybrid predictive modeling approach for catalyzed polymerization reactors","authors":"Omid Sobhani , Hamid Toliati , Furkan Elmaz , Shahab Pormoradi Gerdposhteh , Benedict Carius , Kevin Mets , Siegfried Mercelis","doi":"10.1016/j.ceja.2024.100662","DOIUrl":"10.1016/j.ceja.2024.100662","url":null,"abstract":"<div><div>Polymerization reactions are characterized by complex, nonlinear behaviors that pose significant challenges for conventional modeling techniques. Accurate and reliable models are crucial for advancing material science and enabling technological innovations across various industries. Conventional first-principles models often fall short in capturing the intricate dynamics of polymeric systems, leading to limitations in predictive accuracy. In this work, we propose a novel hybrid modeling approach that combines a conventional first-principles model with the strengths of a data-driven multi-layer perceptron (MLP) model and also a linear regression (LR) model to enhance the predictability of polymerization processes. Utilizing this hybrid approach significantly reduces the mean absolute error for predicting the concentrations of main reagents by 84% and 86%, respectively, in experiments with significantly deviant outcomes. Our results indicate that the model is capable of predicting the concentrations of both the main and side products with a maximum error margin of 3.5%.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100662"},"PeriodicalIF":5.5,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Federico Alberini, Francesco Nerini, Niccolò Mandolini, Francesco Maluta, Alessandro Paglianti, Nicodemo Di Pasquale, Giuseppina Montante
{"title":"On the reliability of image analysis for bubble size distribution measurements in electrolyte solutions in stirred reactors","authors":"Federico Alberini, Francesco Nerini, Niccolò Mandolini, Francesco Maluta, Alessandro Paglianti, Nicodemo Di Pasquale, Giuseppina Montante","doi":"10.1016/j.ceja.2024.100658","DOIUrl":"10.1016/j.ceja.2024.100658","url":null,"abstract":"<div><div>The translation of chemical processes from laboratory to industrial scale is crucial for the effective and sustainable implementation of new technologies. This transition presents significant challenges, particularly in multiphase systems where variations in physical chemistry can complicate scale-up efforts. A key aspect of this challenge is understanding bubble dynamics in gas-liquid systems, which are pivotal in processes such as hydrogen production and CO2 absorption. Bubble size significantly influences mass transfer rates and process efficiency, necessitating accurate measurement methods. A factorial design approach was employed to assess the sensitivity of results to key parameters. The findings provide quantitative guidelines for optimizing image analysis techniques and improving the accuracy of bubble size measurements in diverse operational conditions. This work advances the understanding of bubble dynamics in gas-liquid systems and offers practical insights for refining measurement techniques, ultimately supporting more effective scale-up of chemical processes.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100658"},"PeriodicalIF":5.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}