Cellular and Molecular Neurobiology最新文献

筛选
英文 中文
Expression of CGRP in the Trigeminal Ganglion and Its Effect on the Polarization of Macrophages in Rats with Temporomandibular Arthritis. 三叉神经节中 CGRP 的表达及其对颞下颌关节炎大鼠巨噬细胞极化的影响
IF 4 4区 医学
Cellular and Molecular Neurobiology Pub Date : 2024-02-16 DOI: 10.1007/s10571-024-01456-7
Junli Tao, Xiaohui Wang, Jie Xu
{"title":"Expression of CGRP in the Trigeminal Ganglion and Its Effect on the Polarization of Macrophages in Rats with Temporomandibular Arthritis.","authors":"Junli Tao, Xiaohui Wang, Jie Xu","doi":"10.1007/s10571-024-01456-7","DOIUrl":"10.1007/s10571-024-01456-7","url":null,"abstract":"<p><p>Calcitonin gene-related peptide (CGRP) is synthesized and secreted by trigeminal ganglion neurons, and is a key neuropeptide involved in pain and immune regulation. This study investigates the expression of CGRP in the trigeminal ganglion (TG) and its regulatory role in the polarization of macrophages in rats with temporomandibular arthritis. A rat model of temporomandibular arthritis was established using CFA. Pain behavior was then observed. Temporomandibular joint (TMJ) and the TG were collected, and immunohistochemistry, immunofluorescence (IF) staining, and RT-qPCR were used to examine the expression of CGRP and macrophage-related factors. To investigate the impact of CGRP on macrophage polarization, both CGRP and its antagonist, CGRP 8-37, were separately administered directly within the TG. Statistical analysis revealed that within 24 h of inducing temporomandibular arthritis using CFA, there was a significant surge in CD86 positive macrophages within the ganglion. These macrophages peaked on the 7th day before beginning their decline. In this context, it's noteworthy that administering CGRP to the trigeminal ganglion can prompt these macrophages to adopt the M2 phenotype. Intriguingly, this study demonstrates that injecting the CGRP receptor antagonist (CGRP 8-37) to the ganglion counteracts this shift towards the M2 phenotype. Supporting these in vivo observations, we found that in vitro, CGRP indeed fosters the M2-type polarization of macrophages. CGRP can facilitate the conversion of macrophages into the M2 phenotype. The phenotypic alterations of macrophages within the TG could be instrumental in initiating and further driving the progression of TMJ disorders.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873438/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of HOTAIR Long Non-coding RNA in Gliomas and Other CNS Disorders. HOTAIR 长非编码 RNA 在胶质瘤和其他中枢神经系统疾病中的作用
IF 4 4区 医学
Cellular and Molecular Neurobiology Pub Date : 2024-02-16 DOI: 10.1007/s10571-024-01455-8
Faraz Ahmad, Ravi Sudesh, A Toufeeq Ahmed, Shafiul Haque
{"title":"Roles of HOTAIR Long Non-coding RNA in Gliomas and Other CNS Disorders.","authors":"Faraz Ahmad, Ravi Sudesh, A Toufeeq Ahmed, Shafiul Haque","doi":"10.1007/s10571-024-01455-8","DOIUrl":"10.1007/s10571-024-01455-8","url":null,"abstract":"<p><p>HOX transcript antisense intergenic RNA (HOTAIR) is a long non-coding RNA (lncRNA) which is increasingly being perceived as a tremendous molecular mediator of brain pathophysiology at multiple levels. Epigenetic regulation of target gene expression carried out by HOTAIR is thorough modulation of chromatin modifiers; histone methyltransferase polycomb repressive complex 2 (PRC2) and histone demethylase lysine-specific demethylase 1 (LSD1). Incidentally, HOTAIR was the first lncRNA shown to elicit sponging of specific microRNA (miRNA or miR) species in a trans-acting manner. It has been extensively studied in various cancers, including gliomas and is regarded as a prominent pro-tumorigenic and pro-oncogenic lncRNA. Indeed, the expression of HOTAIR may serve as glioma grade predictor and prognostic biomarker. The objective of this timely review is not only to outline the multifaceted pathogenic roles of HOTAIR in the development and pathophysiology of gliomas and brain cancers, but also to delineate the research findings implicating it as a critical regulator of overall brain pathophysiology. While the major focus is on neuro-oncology, wherein HOTAIR represents a particularly potent underlying pathogenic player and a suitable therapeutic target, mechanisms underlying the regulatory actions of HOTAIR in neurodegeneration, traumatic, hypoxic and ischemic brain injuries, and neuropsychiatric disorders are also presented.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873238/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139746194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frequency and Focus of in Vitro Studies of Microglia-Expressed Cytokines in Response to Viral Infection: A Systematic Review. 针对病毒感染的小胶质细胞表达细胞因子体外研究的频率和重点:系统综述。
IF 4 4区 医学
Cellular and Molecular Neurobiology Pub Date : 2024-02-13 DOI: 10.1007/s10571-024-01454-9
Diego A Barrios-González, Santiago Philibert-Rosas, Iris E Martínez-Juárez, Fernando Sotelo-Díaz, Verónica Rivas-Alonso, Julio Sotelo, Mario A Sebastián-Díaz
{"title":"Frequency and Focus of in Vitro Studies of Microglia-Expressed Cytokines in Response to Viral Infection: A Systematic Review.","authors":"Diego A Barrios-González, Santiago Philibert-Rosas, Iris E Martínez-Juárez, Fernando Sotelo-Díaz, Verónica Rivas-Alonso, Julio Sotelo, Mario A Sebastián-Díaz","doi":"10.1007/s10571-024-01454-9","DOIUrl":"10.1007/s10571-024-01454-9","url":null,"abstract":"<p><p>It is well known that as part of their response to infectious agents such as viruses, microglia transition from a quiescent state to an activated state that includes proinflammatory and anti-inflammatory phases; this behavior has been described through in vitro studies. However, recent in vivo studies on the function of microglia have questioned the two-phase paradigm; therefore, a change in the frequency of in vitro studies is expected. A systematic review was carried out to identify the microglial cytokine profile against viral infection that has been further evaluated through in vitro studies (pro-inflammatory or anti-inflammatory), along with analysis of its publication frequency over the years. For this review, 531 articles published in the English language were collected from PubMed, Web of Science, EBSCO and ResearchGate. Only 27 papers met the inclusion criteria for this systematic review. In total, 19 cytokines were evaluated in these studies, most of which are proinflammatory; the most common are IL-6, followed by TNF-α and IL-1β. It should be pointed out that half of the studies were published between 2015 and 2022 (raw data available in https://github.com/dadriba05/SystematicReview.git ). In this review, we identified that evaluation of pro-inflammatory cytokines released by microglia against viral infections has been performed more frequently than that of anti-inflammatory cytokines; additionally, a higher frequency of evaluation of the response of microglia cells to viral infection through in vitro studies from 2015 and beyond was noted.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disease-Associated Neurotoxic Astrocyte Markers in Alzheimer Disease Based on Integrative Single-Nucleus RNA Sequencing. 基于整合性单核 RNA 测序的阿尔茨海默病中与疾病相关的神经毒性星形胶质细胞标记物
IF 4 4区 医学
Cellular and Molecular Neurobiology Pub Date : 2024-02-12 DOI: 10.1007/s10571-024-01453-w
Wuhan Yu, Yin Li, Fuxin Zhong, Zhangjing Deng, Jiani Wu, Weihua Yu, Yang Lü
{"title":"Disease-Associated Neurotoxic Astrocyte Markers in Alzheimer Disease Based on Integrative Single-Nucleus RNA Sequencing.","authors":"Wuhan Yu, Yin Li, Fuxin Zhong, Zhangjing Deng, Jiani Wu, Weihua Yu, Yang Lü","doi":"10.1007/s10571-024-01453-w","DOIUrl":"10.1007/s10571-024-01453-w","url":null,"abstract":"<p><p>Alzheimer disease (AD) is an irreversible neurodegenerative disease, and astrocytes play a key role in its onset and progression. The aim of this study is to analyze the characteristics of neurotoxic astrocytes and identify novel molecular targets for slowing down the progression of AD. Single-nucleus RNA sequencing (snRNA-seq) data were analyzed from various AD cohorts comprising about 210,654 cells from 53 brain tissue. By integrating snRNA-seq data with bulk RNA-seq data, crucial astrocyte types and genes associated with the prognosis of patients with AD were identified. The expression of neurotoxic astrocyte markers was validated using 5 × FAD and wild-type (WT) mouse models, combined with experiments such as western blot, quantitative real-time PCR (qRT-PCR), and immunofluorescence. A group of neurotoxic astrocytes closely related to AD pathology was identified, which were involved in inflammatory responses and pathways related to neuron survival. Combining snRNA and bulk tissue data, ZEP36L, AEBP1, WWTR1, PHYHD1, DST and RASL12 were identified as toxic astrocyte markers closely related to disease severity, significantly elevated in brain tissues of 5 × FAD mice and primary astrocytes treated with Aβ. Among them, WWTR1 was significantly increased in astrocytes of 5 × FAD mice, driving astrocyte inflammatory responses, and has been identified as an important marker of neurotoxic astrocytes. snRNA-seq analysis reveals the biological functions of neurotoxic astrocytes. Six genes related to AD pathology were identified and validated, among which WWTR1 may be a novel marker of neurotoxic astrocytes.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neonatal IL-4 Over-Exposure is Accompanied by Macrophage Accumulation in Dura Mater After Instant Anti-inflammatory Cytokine Response in CSF CSF 中的细胞因子瞬间产生抗炎反应后,新生儿 IL-4 过度暴露会导致硬脑膜中巨噬细胞聚集
IF 4 4区 医学
Cellular and Molecular Neurobiology Pub Date : 2024-02-05 DOI: 10.1007/s10571-023-01451-4
Ling Wang, Haoran Sha, Xiaoyi He, Yinyin Xie, Jiapeng Deng, Jiexuan Chen, Guoying Li, Junhua Yang
{"title":"Neonatal IL-4 Over-Exposure is Accompanied by Macrophage Accumulation in Dura Mater After Instant Anti-inflammatory Cytokine Response in CSF","authors":"Ling Wang, Haoran Sha, Xiaoyi He, Yinyin Xie, Jiapeng Deng, Jiexuan Chen, Guoying Li, Junhua Yang","doi":"10.1007/s10571-023-01451-4","DOIUrl":"https://doi.org/10.1007/s10571-023-01451-4","url":null,"abstract":"<p>Multiple studies have shown that clinical events resulting into neonatal IL-4 over-exposure, such as asthma in early life and food allergy, were associated with brain damage and that the neuroinflammation induced by them might lead to cognitive impairments, anxiety-/depressive-like behaviors. IL-4 is the most major elevated cytokine in periphery when these clinical events occur and peripheral IL-4 level positively correlates with the severity of those events. Our previous studies have verified that neonatal IL-4 over-exposure induced a delayed neuroinflammatory damage in rodents, which might have adverse implications for brain development and cognition. Neuroinflammation in brain parenchyma is often accompanied by changes in CSF cytokines levels. However, whether the cytokines levels in CSF change after neonatal IL-4 over-exposure is unknown. Here, we found a delayed pro-inflammatory cytokines response (higher IL-6, IL-1β and, TNF levels) in both hippocampus and CSF after an instant anti-inflammatory cytokine response in IL-4 over-exposed rats. Moreover, the pro-inflammatory cytokines response appeared earlier in CSF than in hippocampus. The level of each of the pro-inflammatory cytokines in CSF positively correlated with that in hippocampus at the age of postnatal day 42. More microglia numbers/activation and higher M-CSF level in the hippocampus in IL-4 over-exposed rats were also observed. Furthermore, there were more macrophages with inflammatory activation in dural mater of IL-4 over-exposed rats. In sum, neonatal IL-4 over-exposure in rats induces delayed inflammation in CSF, suggesting CSF examination may serve as a potential method in predicting delayed neuroinflammation in brain following neonatal IL-4 over-exposure.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139689367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Retinal VIP-Amacrine Cell Development During the Critical Period 关键期视网膜贵宾肾上腺素细胞的发育特征
IF 4 4区 医学
Cellular and Molecular Neurobiology Pub Date : 2024-02-05 DOI: 10.1007/s10571-024-01452-x
Xuhong Zhang, Xiaoyu Wang, Yanqing Li, Yingying Zhang, Hong Zhu, Chen Xie, Yudong Zhou, Ye Shen, Jianping Tong
{"title":"Characterization of Retinal VIP-Amacrine Cell Development During the Critical Period","authors":"Xuhong Zhang, Xiaoyu Wang, Yanqing Li, Yingying Zhang, Hong Zhu, Chen Xie, Yudong Zhou, Ye Shen, Jianping Tong","doi":"10.1007/s10571-024-01452-x","DOIUrl":"https://doi.org/10.1007/s10571-024-01452-x","url":null,"abstract":"<p>Retinal vasoactive intestinal peptide amacrine cells (VIP-ACs) play an important role in various retinal light-mediated pathological processes related to different developmental ocular diseases and even mental disorders. It is important to characterize the developmental changes in VIP-ACs to further elucidate their mechanisms of circuit function. We bred VIP-Cre mice with Ai14 and Ai32 to specifically label retinal VIP-ACs. The VIP-AC soma and spine density generally increased, from postnatal day (P)0 to P35, reaching adult levels at P14 and P28, respectively. The VIP-AC soma density curve was different with the VIP-AC spine density curve. The total retinal VIP content reached a high level plateau at P14 but was decreased in adults. From P14 to P16, the resting membrane potential (RMP) became more negative, and the input resistance decreased. Cell membrane capacitance (MC) showed three peaks at P7, P12 and P16. The RMP and MC reached a stable level similar to the adult level at P18, whereas input resistance reached a stable level at P21. The percentage of sustained voltage-dependent potassium currents peaked at P16 and remained stable thereafter. The spontaneous excitatory postsynaptic current and spontaneous inhibitory postsynaptic current frequencies and amplitudes, as well as charge transfer, peaked at P12 to P16; however, there were also secondary peaks at different time points. In conclusion, we found that the second, third and fourth weeks after birth were important periods of VIP-AC development. Many developmental changes occurred around eye opening. The development of soma, dendrite and electrophysiological properties showed uneven dynamics of progression. Cell differentiation may contribute to soma development whereas the changes of different ion channels may play important role for spine development.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>The second, third and fourth weeks after birth were important periods of VIP-AC development. VIP::Ai14 and VIP::Ai32 mice were used for soma and spine analysis, respectively. The developmental curves for VIP-AC soma have a distinct and longer platform, whereas the developmental curves for spine have a longer and smoother slopes. When the number of VIP-AC some is increasing, cell differentiation may play an important role. During the development of spine, the development of different ion channels is the most vital events. Kv-Ka represents the ion channels that conduct Ka, Kv-Kdr represents the ion channels that conduct Kdr, GABAR represents the inhibitory transmission and NMDAR represents the excitatory transmission. The events occur chronologically from left to right.</p>\u0000","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139689654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Treadmill Running Regulates Adult Neurogenesis, Spatial and Non-spatial Learning, Parvalbumin Neuron Activity by ErbB4 Signaling. 跑步通过ErbB4信号传导调节成人神经发生、空间和非空间学习以及副发光体神经元的活性
IF 4 4区 医学
Cellular and Molecular Neurobiology Pub Date : 2024-01-29 DOI: 10.1007/s10571-023-01439-0
Yandong Yi, Yuejin Zhang, Yuanlong Song, Yisheng Lu
{"title":"Treadmill Running Regulates Adult Neurogenesis, Spatial and Non-spatial Learning, Parvalbumin Neuron Activity by ErbB4 Signaling.","authors":"Yandong Yi, Yuejin Zhang, Yuanlong Song, Yisheng Lu","doi":"10.1007/s10571-023-01439-0","DOIUrl":"10.1007/s10571-023-01439-0","url":null,"abstract":"<p><p>Exercise can promote adult neurogenesis and improve symptoms associated with schizophrenia and other mental disorders via parvalbumin (PV)-positive GABAergic interneurons in the dentate gyrus ErbB4 is the receptor of neurotrophic factor neuregulin 1, expressed mostly in PV-positive interneurons. Whether ErbB4 in PV-positive neurons mediates the beneficial effect of exercise and adult neurogenesis on mental disorder needs to be further investigation. Here, we first conducted a four-week study on the effects of AG1478, an ErbB4 inhibitor, on memory and neurogenesis. AG1478 significantly impaired the performance in several memory tasks, including the T-maze, Morris water maze, and contextual fear conditioning, downregulated the expression of total ErbB4 (T-ErbB4) and the ratio of phosphate-ErbB4 (p-ErbB4) to T-ErbB4, and associated with neurogenesis impairment. Interestingly, AG1478 also appeared to decrease intracellular calcium levels in PV neurons, which could be reversed by exercise. These results suggest exercise may regulate adult neurogenesis and PV neuron activity through ErbB4 signaling. Overall, these findings provide further evidence of the importance of exercise for neurogenesis and suggest that targeting ErbB4 may be a promising strategy for improving memory and other cognitive functions in individuals with mental disorders.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139569537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CircSKA3 is Associated With the Risk of Extracranial Artery Stenosis and Plaque Instability Among Ischemic Stroke Patients. CircSKA3 与缺血性脑卒中患者颅外动脉狭窄和斑块不稳定性的风险有关。
IF 4 4区 医学
Cellular and Molecular Neurobiology Pub Date : 2024-01-10 DOI: 10.1007/s10571-023-01449-y
Ning Zhu, Ziyi Wang, Mingfeng Tao, Yongxin Li, Lihua Shen, Tian Xu
{"title":"CircSKA3 is Associated With the Risk of Extracranial Artery Stenosis and Plaque Instability Among Ischemic Stroke Patients.","authors":"Ning Zhu, Ziyi Wang, Mingfeng Tao, Yongxin Li, Lihua Shen, Tian Xu","doi":"10.1007/s10571-023-01449-y","DOIUrl":"10.1007/s10571-023-01449-y","url":null,"abstract":"<p><p>Circular RNA circSKA3 (spindle and kinetochore-related complex subunit 3) has been identified as a prognostic factor in ischemic stroke. The objective of this study was to investigate the association of circSKA3 with the risk of extracranial artery stenosis (ECAS) and plaque instability in patients with ischemic stroke. We constructed a competing endogenous RNA (ceRNA) network regulated by circSKA3 based on differentially expressed circRNAs and mRNAs between five patients and five controls. Gene Ontology (GO) analysis was performed on the 65 mRNAs within the network, revealing their primary involvement in inflammatory biological processes. A total of 284 ischemic stroke patients who underwent various imaging examinations were included for further analyses. Each 1 standard deviation increase in the log-transformed blood circSKA3 level was associated with a 56.3% increased risk of ECAS (P = 0.005) and a 142.1% increased risk of plaque instability (P = 0.005). Patients in the top tertile of circSKA3 had a 2.418-fold (P < 0.05) risk of ECAS compared to the reference group (P for trend = 0.02). CircSKA3 demonstrated a significant but limited ability to discriminate the presence of ECAS (AUC = 0.594, P = 0.015) and unstable carotid plaques (AUC = 0.647, P = 0.034). CircSKA3 improved the reclassification power for ECAS (NRI: 9.86%, P = 0.012; IDI: 2.97%, P = 0.007) and plaque instability (NRI: 36.73%, P = 0.008; IDI: 7.05%, P = 0.04) beyond conventional risk factors. CircSKA3 played an important role in the pathogenesis of ischemic stroke by influencing inflammatory biological processes. Increased circSKA3 was positively associated with the risk of ECAS and plaque instability among ischemic stroke patients.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139402065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis and Regulatory Mechanisms of Platelet-Related Genes in Patients with Ischemic Stroke. 缺血性中风患者血小板相关基因的分析与调控机制
IF 4 4区 医学
Cellular and Molecular Neurobiology Pub Date : 2024-01-04 DOI: 10.1007/s10571-023-01433-6
Yuan Li, Yuanlu Shu, Kun Yu, Ruihan Ni, Lan Chu
{"title":"Analysis and Regulatory Mechanisms of Platelet-Related Genes in Patients with Ischemic Stroke.","authors":"Yuan Li, Yuanlu Shu, Kun Yu, Ruihan Ni, Lan Chu","doi":"10.1007/s10571-023-01433-6","DOIUrl":"10.1007/s10571-023-01433-6","url":null,"abstract":"<p><p>It was found that ischemic stroke (IS) was associated with abnormal platelet activity and thrombosis. However, the potential significance of platelet-related genes (PRGs) in IS still needs to be more thorough. This study extracted IS-related transcriptome datasets from the Gene Expression Omnibus (GEO) database. The target genes were obtained by intersecting the differentially expressed genes (DEGs), the module genes related to IS, and PRGs, where the key genes of IS were screened by two machine learning algorithms. The key genes-based diagnostic model was constructed. Gene set enrichment analysis (GSEA) and the immune microenvironment analyses were analyzed targeting key genes in IS. The co-expression, TF-mRNA, and competitive endogenous RNAs (ceRNA) regulatory networks were constructed to reveal the potential regulation of key genes. Potential drugs targeting key genes were predicted as well. Totals of eight target genes were obtained and were associated with immune-related functions. Four platelet-related key genes were acquired, which were related to immunity and energy metabolism. The abnormal expressions of DOCK8, GIMAP5, ICOS were determined by the quantitative real-time polymerase chain reaction (qRT-PCR), and the significant correlations among these key genes were identified. Notably, hsa-miR-17-3p, hsa-miR-3158-3p, hsa-miR-423-3p, and hsa-miR-193a-8p could regulate all key genes at the same time. In addition, Caffeine, Carboplatin, and Vopratelimab were the targeted drugs of these key genes. This study identified four platelet-related key genes of IS, which might help to deepen the understanding of the role of platelet-related genes in the molecular mechanism of IS.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139086053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enlarged Perivascular Space and Index for Diffusivity Along the Perivascular Space as Emerging Neuroimaging Biomarkers of Neurological Diseases 扩大的血管周围空间和血管周围空间扩散指数是神经系统疾病的新兴神经影像生物标志物
IF 4 4区 医学
Cellular and Molecular Neurobiology Pub Date : 2023-12-29 DOI: 10.1007/s10571-023-01440-7
Jun Zhang, Shengwen Liu, Yaqi Wu, Zhijian Tang, Yasong Wu, Yiwei Qi, Fangyong Dong, Yu Wang
{"title":"Enlarged Perivascular Space and Index for Diffusivity Along the Perivascular Space as Emerging Neuroimaging Biomarkers of Neurological Diseases","authors":"Jun Zhang, Shengwen Liu, Yaqi Wu, Zhijian Tang, Yasong Wu, Yiwei Qi, Fangyong Dong, Yu Wang","doi":"10.1007/s10571-023-01440-7","DOIUrl":"https://doi.org/10.1007/s10571-023-01440-7","url":null,"abstract":"<p>The existence of lymphatic vessels or similar clearance systems in the central nervous system (CNS) that transport nutrients and remove cellular waste is a neuroscientific question of great significance. As the brain is the most metabolically active organ in the body, there is likely to be a potential correlation between its clearance system and the pathological state of the CNS. Until recently the successive discoveries of the glymphatic system and the meningeal lymphatics solved this puzzle. This article reviews the basic anatomy and physiology of the glymphatic system. Imaging techniques to visualize the function of the glymphatic system mainly including post-contrast imaging techniques, indirect lymphatic assessment by detecting increased perivascular space, and diffusion tensor image analysis along the perivascular space (DTI-ALPS) are discussed. The pathological link between glymphatic system dysfunction and neurological disorders is the key point, focusing on the enlarged perivascular space (EPVS) and the index of diffusivity along the perivascular space (ALPS index), which may represent the activity of the glymphatic system as possible clinical neuroimaging biomarkers of neurological disorders.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>The pathological link between glymphatic system dysfunction and neurological disorders is the key point, focusing on the enlarged perivascular space (EPVS) and the index for of diffusivity along the perivascular space (ALPS index), which may represent the activity of the glymphatic system as possible clinical neuroimaging biomarkers of neurological disorders</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139071657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信