The Effects and Mechanisms of n-3 and n-6 Polyunsaturated Fatty Acids in the Central Nervous System.

IF 3.6 4区 医学 Q3 CELL BIOLOGY
Jiajia Tian, Yating Zhang, Xudong Zhao
{"title":"The Effects and Mechanisms of n-3 and n-6 Polyunsaturated Fatty Acids in the Central Nervous System.","authors":"Jiajia Tian, Yating Zhang, Xudong Zhao","doi":"10.1007/s10571-025-01543-3","DOIUrl":null,"url":null,"abstract":"<p><p>The brain is rich in fatty acids (FAs), with polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (C22:6n-3, DHA) and arachidonic acid (C20:4n-6, ARA), and the former predominantly stored in the form of phosphatidylcholine, phosphatidyl ethanolamine (PE, diacyl and plasma phospholipid proform), and phosphatidylserine (PS), while the latter is mainly found in ethanolamine phosphoglycerides (EPG) and contributes to constitute most of phosphoglycerides. When required by the body, PUFAs are liberated from membrane phospholipids (either directly or via their metabolites, which are generated by a series of enzymatic reactions) to participate in various cerebral physiological processes. PUFAs and their derivatives play crucial roles in modulating numerous bodily functions, including neuronal signal transmission, neurogenesis, neuroinflammation, and glucose uptake in the brain, thereby sustaining fundamental brain function. Although PUFAs have been implicated in a spectrum of neurological disorders, including acute brain injury (TBI), multiple sclerosis (MS), and neurodegenerative diseases, their role in conditions such as depression, Alzheimer's disease (AD), and Parkinson's disease (PD) is particularly noteworthy. These disorders are closely linked to critical brain functions, including cognition, memory, and inflammatory processes. Given the substantial body of research elucidating the involvement of PUFAs in the pathogenesis and progression of these diseases, this review will specifically concentrate on their impact within these contexts.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"45 1","pages":"25"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-025-01543-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The brain is rich in fatty acids (FAs), with polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (C22:6n-3, DHA) and arachidonic acid (C20:4n-6, ARA), and the former predominantly stored in the form of phosphatidylcholine, phosphatidyl ethanolamine (PE, diacyl and plasma phospholipid proform), and phosphatidylserine (PS), while the latter is mainly found in ethanolamine phosphoglycerides (EPG) and contributes to constitute most of phosphoglycerides. When required by the body, PUFAs are liberated from membrane phospholipids (either directly or via their metabolites, which are generated by a series of enzymatic reactions) to participate in various cerebral physiological processes. PUFAs and their derivatives play crucial roles in modulating numerous bodily functions, including neuronal signal transmission, neurogenesis, neuroinflammation, and glucose uptake in the brain, thereby sustaining fundamental brain function. Although PUFAs have been implicated in a spectrum of neurological disorders, including acute brain injury (TBI), multiple sclerosis (MS), and neurodegenerative diseases, their role in conditions such as depression, Alzheimer's disease (AD), and Parkinson's disease (PD) is particularly noteworthy. These disorders are closely linked to critical brain functions, including cognition, memory, and inflammatory processes. Given the substantial body of research elucidating the involvement of PUFAs in the pathogenesis and progression of these diseases, this review will specifically concentrate on their impact within these contexts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
137
审稿时长
4-8 weeks
期刊介绍: Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信