Cells Tissues OrgansPub Date : 2024-01-01Epub Date: 2022-08-15DOI: 10.1159/000526432
Madhuri H More, Sagar S Varankar, Rutika R Naik, Rahul D Dhake, Pritha Ray, Rahul M Bankar, Avinash M Mali, Ayalur Raghu Subbalakshmi, Priyanka Chakraborty, Mohit Kumar Jolly, Sharmila A Bapat
{"title":"A Multistep Tumor Growth Model of High-Grade Serous Ovarian Carcinoma Identifies Hypoxia-Associated Signatures.","authors":"Madhuri H More, Sagar S Varankar, Rutika R Naik, Rahul D Dhake, Pritha Ray, Rahul M Bankar, Avinash M Mali, Ayalur Raghu Subbalakshmi, Priyanka Chakraborty, Mohit Kumar Jolly, Sharmila A Bapat","doi":"10.1159/000526432","DOIUrl":"10.1159/000526432","url":null,"abstract":"<p><p>High-grade serous ovarian carcinoma (HGSC) is associated with late-stage disease presentation and poor prognosis, with a limited understanding of early transformation events. Our study analyzes HGSC tumor progression and organ-specific metastatic dissemination to identify hypoxia-associated molecular, cellular, and histological alterations. Clinical characteristics of the HGSC were replicated in orthotopic xenografts, which involve metastatic dissemination and the prevalence of group B tumors (volume: >0.0625 ≤ 0.5 cm3). Enhanced hyaluronic acid (HA) deposition, expanded tumor vasculature, and increased necrosis contributed to the remodeling of tumor tissue architecture. The proliferative potential of tumor cells and the ability to form glands were also altered during tumor growth. Flow cytometry and label chase-based molecular profiling across the tumor regenerative hierarchy identified the hypoxia-vasculogenic niche and the hybrid epithelial-mesenchymal tumor-cell state as determinants of self-renewal capabilities of progenitors and cancer stem cells. A regulatory network and mathematical model based on tumor histology and molecular signatures predicted hypoxia-inducible factor 1-alpha (HIF1A) as a central node connecting HA synthesis, epithelial-mesenchymal transition, metabolic, vasculogenic, inflammatory, and necrotic pathways in HGSC tumors. Thus, our findings provide a temporal resolution of hypoxia-associated events that sculpt HGSC tumor growth; an in-depth understanding of it may aid in the early detection and treatment of HGSC.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40616639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cells Tissues OrgansPub Date : 2024-01-01Epub Date: 2024-02-06DOI: 10.1159/000537688
Wafaa Gaber, Manal T Hussein, Khaled H Aly, Fatma M Abdel-Maksoud
{"title":"Morphological and Immunohistochemical Differentiation of Neuronal and Glial Cells of the Vascular and Avascular Regions of the Donkey's Paurangiotic Retina.","authors":"Wafaa Gaber, Manal T Hussein, Khaled H Aly, Fatma M Abdel-Maksoud","doi":"10.1159/000537688","DOIUrl":"10.1159/000537688","url":null,"abstract":"<p><strong>Introduction: </strong>Ocular diseases pose a significant health concern for donkeys. However, studies examining the microanatomy and cell populations of the donkey retina are scarce. The current study aimed to describe the vascular pattern of the donkey retina and document its cellular components.</p><p><strong>Methods: </strong>The donkey retina specimens were obtained from different retinal regions and prepared for semithin sectioning and immunohistochemistry.</p><p><strong>Results: </strong>The donkey has a paurangiotic retina in which retinal vessels are confined to a narrow area around the optic disc. Glial cells coexist with the blood vessels being very numerous in the vascular region and become scanty in the avascular ones. S-100-positive astrocytes could be observed in these avascular areas. Ganglion cells are organized in a single layer with the least population existing in the peripheral retina. Acidic fibroblast growth factor (AFGF) is immunoreactive in amacrine and ganglion cells. A subpopulation of amacrine cells reacted strongly to tyrosine hydroxylase (TH), and others reacted positively to S-100 protein. Ganglion cell nuclei exhibited a strong immunoreactivity to S-100 protein as well. Furthermore, glial fibrillary acidic protein (GFAP) is used to identify Müller cells that extend their processes across the retina from the inner to the outer limiting membrane.</p><p><strong>Conclusions: </strong>In conclusion, our findings provide novel insights into the normal retinal organization. The donkey retina shows the characteristic expression of immunohistochemical markers for the major cell types. In addition, the distribution of glial cells is comparable between the vascular and avascular regions.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139697027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Cell-Derived Matrices on Growth and Differentiation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells.","authors":"Sakthivel Selvaraj, Secunda Rupert, Sangeetha Kadapakkam Nandabalan, Charumathi Anbalagan, Prasanna Srinivasan Rajaram, Jeswanth Satyanesan, Rosy Vennila, Surendran Rajagopal","doi":"10.1159/000526153","DOIUrl":"10.1159/000526153","url":null,"abstract":"<p><p>Cell-derived matrices (CDMs) are scaffolds constructed by decellularization of cellular matrices from different tissues and organs. Since CDMs mimic the extracellular matrices (ECMs) of native tissues, it plays an essential role in the preparation of bioscaffolds. CDM scaffolds from mesenchymal stem cells (MSCs) have been reported to support cell adhesion and proliferation of its own cells. Therefore, in this study we aimed to test if growth of human Wharton's jelly-derived MSCs may be enhanced when cultured on their own CDMs. To do this, MSCs were induced to generate ECM using ascorbic acid. Thus, obtained matrices were decellularized and characterized quantitatively for changes in their biochemical components (total protein, collagen, glycosaminoglycans) and qualitatively for fibronectin, laminin, and collagen (I & IV) by immunostaining. Our results show the retention of essential ECM components in the decellularized WJ-MSC-derived matrix (WJ-CDM). The influence of WJ-CDM on proliferation and differentiation of WJ-MSCs were evaluated by comparing their growth on collagen and fibronectin-only coated plates. A non-coated tissue culture polystyrene plate (TCPS) served as control. Our cell proliferation results show that no significant changes were observed in the proliferation of MSCs when cultured on WJ-CDM as compared to the bio-coated and non-coated cultures. However, gene expression analysis of the differentiation process showed that osteogenic and adipogenic differentiation potential of the WJ-MSCs was significantly increased upon culturing them on WJ-CDM. In conclusion, the present study reveals that the WJ-MSCs cultured on WJ-CDM may augment osteogenic and adipogenic differentiation.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40570351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aneuploidy Rate and Stemness in Low-Level Mosaic Human Embryonic Stem Cells in the Presence/Absence of Bortezomib, Paclitaxel, and Lapatinib.","authors":"Nazanin Sadat Khademi, Shirin Farivar, Masood Bazrgar, Seyedeh-Nafiseh Hassani, Najmeh Sadat Masoudi, Newsha Haghparast, Mehran Rezaei Larijani","doi":"10.1159/000526199","DOIUrl":"10.1159/000526199","url":null,"abstract":"<p><p>Human embryonic stem cells (hESCs) are predisposed to aneuploidy through continual passages. Some reports indicate more sensitivity of aneuploid hESCs cells to anticancer drugs. The present study was designed to investigate the cytotoxicity of three anticancer drugs (including bortezomib, paclitaxel, and lapatinib) and their effect on aneuploidy rate in hESCs. To create a low-level mosaic cell line, normal hESCs (80%) and trisomic hESCs for chromosomes 12 and 17 (20%) were mixed. The effect of the 3 mentioned anticancer drugs on the chromosomal status was assessed by metaphase spread analysis after selection of the nontoxic conditions. Expression of pluripotency genes was analyzed, and an alkaline phosphatase test was performed to assess pluripotency preservation. Our data showed that treatment with bortezomib, paclitaxel, and lapatinib was nontoxic at 0.01, 0.01, and 0.2 μ<sc>M</sc> concentrations, respectively. Alkaline phosphatase and pluripotency gene expression analyses revealed maintenance of pluripotency following treatment with above-noted nontoxic concentrations. Aneuploid cells were dominant in treated and control groups with a minimum abundance of 70%, with no significant differences between groups. Drug treatments had no negative effect on pluripotency. Insensitivity of aneuploid cells in treatment groups could be related to the specific characteristics of each cell line in response to the drug and the proliferative superiority of cells with trisomies 12 and 17.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40570729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cells Tissues OrgansPub Date : 2024-01-01Epub Date: 2022-09-01DOI: 10.1159/000526845
Elena Zakirova, Alexander Aimaletdinov, Milana Mansurova, Angelina Titova, Igor Kurilov, Catrin Sian Rutland, Albina Malanyeva, Albert Rizvanov
{"title":"Artificial Microvesicles: New Perspective on Healing Tendon Wounds.","authors":"Elena Zakirova, Alexander Aimaletdinov, Milana Mansurova, Angelina Titova, Igor Kurilov, Catrin Sian Rutland, Albina Malanyeva, Albert Rizvanov","doi":"10.1159/000526845","DOIUrl":"10.1159/000526845","url":null,"abstract":"<p><p>Tendons have a limited capacity to repair both naturally and following clinical interventions. Damaged tissue often presents with structural and functional differences, adversely affecting animal performance, mobility, health, and welfare. Advances in cell therapies have started to overcome some of these issues, however complications such as the formation of ectopic bone remain a complication of this technique. Regenerative medicine is therefore looking toward future therapies such as the introduction of microvesicles (MVs) derived from stem cells (SCs). The aim of the present study was to assess the characteristics of artificially derived MVs, from equine mesenchymal stem cells (MSCs), when delivered to rat tendon cells in vitro and damaged tendons in vivo. The initial stages of extracting MVs from equine MSCs and identifying and characterizing the cultured tendon stem/progenitor cells (TSCs) from rat Achilles tendons were undertaken successfully. The horse MSCs and the rat tendon cells were both capable of differentiating in 3 directions: adipogenic, osteogenic, and chondrogenic pathways. The artificially derived equine MVs successfully fused with the TSC membranes, and no cytotoxic or cytostimulating effects were observed. In addition, co-cultivation of TSCs with MVs led to stimulation of cell proliferation and migration, and cytokine VEGF and fractalkine expression levels were significantly increased. These experiments are the first to show that artificially derived MVs exhibited regeneration-stimulating effects in vitro, and that fusion of cytoplasmic membranes from diploid cell lines originating from different species was possible. The experiment in vivo demonstrated the influence of MVs on synthesis of collagen I and III types in damaged tendons of rats. Explorations in vivo showed accelerated regeneration of injured tendons after introduction of the MVs into damaged areas. The results from the studies performed indicated obvious positive modifying effects following the administration of MVs. This represents the initial successful step required prior to translating this regenerative medicine technique into clinical trials, such as for tendon repair in injured horses.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40337183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cells Tissues OrgansPub Date : 2024-01-01Epub Date: 2023-01-04DOI: 10.1159/000528883
Jiyoon Chun, Taeyoung Kang, Jong-Pil Seo, Hyohoon Jeong, Minhan Kim, Byung Sun Kim, Meejung Ahn, Jeongtae Kim, Taekyun Shin
{"title":"Glycoconjugate-Specific Developmental Changes in the Horse Vomeronasal Organ.","authors":"Jiyoon Chun, Taeyoung Kang, Jong-Pil Seo, Hyohoon Jeong, Minhan Kim, Byung Sun Kim, Meejung Ahn, Jeongtae Kim, Taekyun Shin","doi":"10.1159/000528883","DOIUrl":"10.1159/000528883","url":null,"abstract":"<p><p>The vomeronasal organ (VNO) is a tubular pheromone-sensing organ in which the lumen is covered with sensory and non-sensory epithelia. This study used immunohistochemistry and lectin histochemistry techniques to evaluate developmental changes, specifically of the glycoconjugate profile, in the horse VNO epithelium. Immunostaining analysis revealed PGP9.5 expression in some vomeronasal non-sensory epithelium (VNSE) cells and in the vomeronasal receptor cells of the vomeronasal sensory epithelium (VSE) in fetuses, young foals, and adult horses. Olfactory marker protein expression was exclusively localized in receptor cells of the VSE in fetuses, young foals, and adult horses and absent in VNSE. To identify the glycoconjugate type, lectin histochemistry was performed using 21 lectins. Semi-quantitative analysis revealed that the intensities of glycoconjugates labeled with WGA, DSL, LEL, and RCA120 were significantly higher in adult horse VSE than those in foal VSE, whereas the intensities of glycoconjugates labeled with LCA and PSA were significantly lower in adult horse VSE. The intensities of glycoconjugates labeled with s-WGA, WGA, BSL-II, DSL, LEL, STL, ConA, LCA, PSA, DBA, SBA, SJA, RCA120, jacalin, and ECL were significantly higher in adult horse VNSE than those in foal VNSE, whereas the intensity of glycoconjugates labeled with UEA-I was lower in adult horse VNSE. Histochemical analysis of each lectin revealed that various glycoconjugates in the VSE were present in the receptor, supporting, and basal cells of foals and adult horses. A similar pattern of lectin histochemistry was also observed in the VNSE of foals and adult horses. In conclusion, these results suggest that there is an increase in the level of N-acetylglucosamine (labeled by WGA, DSL, LEL) and galactose (labeled by RCA120) in horse VSE during postnatal development, implying that they may influence the function of VNO in adult horses.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10480678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cells Tissues OrgansPub Date : 2024-01-01Epub Date: 2023-07-28DOI: 10.1159/000532011
Hüseyin Fındık, Mehmet Gökhan Aslan, Murat Okutucu, Adnan Yılmaz, Levent Tümkaya, Tolga Mercantepe, Kerimali Akyıldız, Feyzahan Uzun
{"title":"Protective Effect of Vaccinium myrtillus Extract on X-Ray Irradiation-Induced Retinal Toxicity via eNOS and 8-OHdG expression.","authors":"Hüseyin Fındık, Mehmet Gökhan Aslan, Murat Okutucu, Adnan Yılmaz, Levent Tümkaya, Tolga Mercantepe, Kerimali Akyıldız, Feyzahan Uzun","doi":"10.1159/000532011","DOIUrl":"10.1159/000532011","url":null,"abstract":"<p><p>Every year, hundreds of thousands of cancer patients receive radiotherapy treatment. Oxidative stress is observed in healthy tissues due to irradiation exposure. The present study is the first to address the effects of Vaccinium myrtillus (whortleberry, WB) against the effects of X-ray irradiation on retinal tissue. Twenty-four Sprague-Dawley rats were randomly allocated into 4 groups: (1) control group: rats without any treatment, (2) X-ray irradiation group: 8 Gray (Gy) RT for 2 days, (3) 100 mg WB extract + X-ray irradiation group: 8 Gy irradiation for 2 days and followed by intraperitoneal (IP) WB extract (100 mg/kg) supplementation for 10 days, (4) 200 mg WB extract + X-ray irradiation group: 8 Gy irradiation for 2 days and followed by IP WB extract (200 mg/kg) supplementation for 10 days. Eyes were enucleated on the 10th day after RT for histopathological, immunohistochemical (8-hydroxy-2'-deoxyguanosine [8-OHdG], endothelial nitric oxide synthase [eNOS]), and biochemical analyses (glutathione peroxidase [GSH], and malondialdehyde [MDA]). The GSH levels significantly decreased and MDA levels and 8-OHdG staining increased after X-ray irradiation compared to the control group. Combined X-ray irradiation + WB treatment significantly increased GSH levels and significantly decreased MDA production and 8-OHdG staining. However, eNOS staining was not affected in any of the groups. Besides, X-ray irradiation significantly increased cell losses and edematous areas. The WB significantly reversed the cellular damage in ganglion cells, inner nuclear, and outer nuclear layers in quantitative analyses. The X-ray irradiation caused significant retinal impairment, and additional WB therapy provided protective effects against radiation-induced retinopathy. These results may suggest WB extract as an adjuvant therapy to reverse retinal impairments after X-ray irradiation.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9894517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cells Tissues OrgansPub Date : 2024-01-01Epub Date: 2024-08-27DOI: 10.1159/000540976
Tae-Hyeon Cho, Miri Kim, Shin Hyung Kim, Jong Eun Lee, Se Hoon Kim, Hyun Jung Kim, Ju-Eun Hong, In-Seung Yeo, Hun-Mu Yang
{"title":"Reconsidering Neurogenetic Indication in the Human Brain: Broad Expression of Doublecortin Transcript in the Hippocampal and Cortical Cell Populations.","authors":"Tae-Hyeon Cho, Miri Kim, Shin Hyung Kim, Jong Eun Lee, Se Hoon Kim, Hyun Jung Kim, Ju-Eun Hong, In-Seung Yeo, Hun-Mu Yang","doi":"10.1159/000540976","DOIUrl":"10.1159/000540976","url":null,"abstract":"<p><strong>Introduction: </strong>Neurogenesis in the adult brain may play an important role in memory and cognition; however, knowledge of neurogenic markers in the human brain remains limited. We compared the single-nucleus transcriptome of the hippocampus with that of other cortical regions to identify hippocampus-specific neurogenic markers.</p><p><strong>Methods: </strong>We analyzed 26,189 nuclei from four human brains collected within 16 h of death. Clustering and annotation were performed to examine differential expression, gene ontology, and intercellular communication. DCX expression was validated by ddPCR.</p><p><strong>Results: </strong>Immature markers such as DCX, CALB2, NES, SOX2, PAX6, DPYSL3, and TUBB3 were expressed in both hippocampus and prefrontal cortex, with higher levels in the prefrontal cortex. ddPCR confirmed higher expression of DCX in the prefrontal cortex. DCX was involved in both neurogenesis and neuroprotection pathways.</p><p><strong>Conclusion: </strong>Neurogenic markers are not definitive indicators of adult neurogenesis as their roles are more complex than previously understood.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cells Tissues OrgansPub Date : 2024-01-01Epub Date: 2022-10-21DOI: 10.1159/000527684
Yafu Zhou, Jianhua Yan, Huiguo Chen, Wenwu Zhou, Jinsong Yang
{"title":"MicroRNA-133a-3p Inhibits Lung Adenocarcinoma Development and Cisplatin Resistance through Targeting GINS4.","authors":"Yafu Zhou, Jianhua Yan, Huiguo Chen, Wenwu Zhou, Jinsong Yang","doi":"10.1159/000527684","DOIUrl":"10.1159/000527684","url":null,"abstract":"<p><p>GINS subunit complex 4 (GINS4) is fundamental to DNA replication and G1/S phase transition of the cell cycle in eukaryotes. Further, recent studies implied that GINS4 can mediate the progression of several tumors, but its mechanism in lung adenocarcinoma (LUAD) is not clarified. Therefore, the role of GINS4 in LUAD was explored. miR-133a-3p and GINS4 mRNA expression were tested through qRT-PCR. Protein levels of the two genes were assayed by Western blot. Their targeting relationship was predicted and verified by bioinformatics prediction and dual-luciferase analysis. The functions of miR-133a-3p and GINS4 in LUAD were evaluated by Transwell, wound healing, CCK-8, and flow cytometry assays. MTT assay and caspase-3 activity detection were utilized to measure the regulation of miR-133a-3p/GINS4 in the cisplatin sensitivity of LUAD cells. The results showed that GINS4 was highly expressed in LUAD cells (p < 0.05). miR-133a-3p, the upstream gene of GINS4 in LUAD, negatively mediated GINS4 expression. Moreover, overexpressing GINS4 enhanced the proliferative, migratory, and invasive abilities of LUAD cells and inhibited cell apoptosis and the sensitivity to cisplatin, while overexpressing miR-133a-3p caused the contrary results. However, the promoting effects of GINS4 overexpression on LUAD could be offset by miR-133a-3p overexpression. miR-133a-3p could regulate malignant behaviors and cisplatin sensitivity of LUAD cells through negatively regulating GINS4. In conclusion, our findings demonstrated that GINS4 was overexpressed in LUAD and promoted the malignant behavior of LUAD cells. Moreover, miR-133a-3p could negatively regulate GINS4, thereby suppressing the malignant progression and increasing the cisplatin sensitivity of LUAD.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40579956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three-Dimensional Graphene Promotes the Proliferation of Cholinergic Neurons.","authors":"Ziyun Jiang, Linhong Zhou, Miao Xiao, Sancheng Ma, Guosheng Cheng","doi":"10.1159/000534255","DOIUrl":"10.1159/000534255","url":null,"abstract":"<p><strong>Introduction: </strong>An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a common property of Alzheimer's disease and the degeneration of functional BFCNs is related to learning and memory deficits. As a biocompatible and conductive scaffold for growth of neural stem cells, three-dimensional graphene foam (3D-GF) supports applications in tissue engineering and regenerative medicine. Although its effects on differentiation have been demonstrated, the effect of 3D-GF scaffold on the generation of BFCNs still remains unknown.</p><p><strong>Methods: </strong>In this study, we used 3D-GF as a culture substrate for neural progenitor cells (NPCs) and demonstrated that this scaffold material promotes the differentiation of BFCNs while maintaining excellent cell viability and proliferation.</p><p><strong>Results: </strong>Immunofluorescence analysis, real-time polymerase chain reaction, Western blotting, and ELISA revealed that the proportion of BFCNs at 21 days of differentiation reached approximately 30.5% on 3D-GF compared with TCPS group that only presented 9.7%. Furthermore, a cell adhesion study suggested that 3D-GF scaffold enhances the expression of adhesion proteins including vinculin, integrin, and N-cadherin. These findings indicate that 3D-GF scaffold materials are preferable candidates for the differentiation of BFCNs from NPCs.</p><p><strong>Conclusions: </strong>These results suggest new opportunities for the application of 3D-GF scaffold as a neural scaffold for cholinergic neurons therapies based on NPCs.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41182144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}