Cells Tissues Organs最新文献

筛选
英文 中文
Treatment of corticosteroid-induced myopathy through Filgrastim induced endogenous stem cells mobilization in male albino rats. 非格拉西汀诱导内源性干细胞动员治疗皮质类固醇诱导的雄性白化大鼠肌病。
IF 2.9 4区 生物学
Cells Tissues Organs Pub Date : 2025-03-11 DOI: 10.1159/000545172
Tarek Hamdy Abd-Elhamid, Nahla Shahat Ismail, Yahia A Amin, Fatma Y Meligy, Ahmed Talat Galal, Hoda Ahmed M Abdel-Ziz, Maha Abd-El Baki Ahmed
{"title":"Treatment of corticosteroid-induced myopathy through Filgrastim induced endogenous stem cells mobilization in male albino rats.","authors":"Tarek Hamdy Abd-Elhamid, Nahla Shahat Ismail, Yahia A Amin, Fatma Y Meligy, Ahmed Talat Galal, Hoda Ahmed M Abdel-Ziz, Maha Abd-El Baki Ahmed","doi":"10.1159/000545172","DOIUrl":"https://doi.org/10.1159/000545172","url":null,"abstract":"<p><strong>Introduction: </strong>One of well-known exogenous fluorinated glucocorticoid that is used to treat inflammatory and various autoimmune illnesses is dexamethasone. Dexamethasone is known to cause skeletal muscular weakness and when used for an extended period of time, skeletal muscle undergoes atrophy. Granulocyte colony-stimulating factor (G-CSF) is a glycoprotein that helps mobilize stem cells from bone marrow into peripheral circulation. In order to maintain the function of skeletal muscle, these mobilized stem cells multiply and differentiate into mature myocytes. This study was conducted to investigate to what extent administration of filgrastim, human methionyl granulocyte colony-stimulating factor (G-CSF), ameliorates glucocorticoid-induced skeletal muscles damage in adult male albino rats.</p><p><strong>Methods: </strong>Thirty adult male albino rats were randomly divided into three groups (ten/group), group I (control group, CG): rats received normal diet and orally given normal saline, group II (dexamethasone group, DG): rats were given dexamethasone at a dose of 0.5mg/kg for one month by intraperitoneal injection, group III (filgrastim group, FG): rats were given dexamethasone at dose of 0.5 mg/kg and on day 15, at the beginning of the third week, they were given Filgrastim at a dose of 20 µg/kg till the end of the 4th week by intraperitoneal injection with dexamethasone. Assessment of CK levels, total body weight and motor activity at different time points were done and skeletal muscles specimens were processed for light microscopy, electron microscopy and immunohistochemistry examination.</p><p><strong>Results: </strong>Administration of dexamethasone (group II) showed variant types of pathological changes such as elevated CK, decrease in body weight, impairment of muscle activity and histologically myofibrillar disarrangement together with cellular infiltration and edema. Filgrastim group showed significant reduction in most of those manifestations. Administration of filgrastim with dexamethasone meliorated most of the symptoms related to dexamethasone induced-myopathy.</p><p><strong>Conclusion: </strong>Filgrastim administration recovered manifestations of skeletal muscle injuries caused by dexamethasone.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"1-36"},"PeriodicalIF":2.9,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Downregulation of Signal Transducer and Activator of Transcription 4 Contributes to Impaired Osteogenic Differentiation of Human Bone Marrow Stem Cells during in vitro Expansion. 信号传导和转录激活因子4 (STAT4)的下调有助于人骨髓干细胞(hBMSCs)在体外扩增过程中的成骨分化受损。
IF 2.9 4区 生物学
Cells Tissues Organs Pub Date : 2025-03-07 DOI: 10.1159/000544952
Weiqiong Rong, Yuanying Yuan, Shaomian Yao
{"title":"Downregulation of Signal Transducer and Activator of Transcription 4 Contributes to Impaired Osteogenic Differentiation of Human Bone Marrow Stem Cells during in vitro Expansion.","authors":"Weiqiong Rong, Yuanying Yuan, Shaomian Yao","doi":"10.1159/000544952","DOIUrl":"10.1159/000544952","url":null,"abstract":"<p><strong>Introduction: </strong>In vitro expansion of primary human bone marrow stem cells (hBMSCs) is necessary to obtain sufficient cells for therapeutic uses. Unfortunately, hBMSCs rapidly lose their osteogenic differentiation potential during expansion, significantly limiting their applications. Signal transducer and activator of transcription 4 (STAT4) is known to play roles in cell migration, proliferation, and differentiation. This study aimed to determine the expression and the role of STAT4 during the expansion of hBMSCs.</p><p><strong>Methods: </strong>STAT4 expression in different passages of hBMSCs was evaluated using qRT-PCR and Western blotting. RNA interference and adeno-associated virus serotype 2-mediated gene overexpression were employed to assess the function of STAT4. RNA samples from STAT4-overexpressing hBMSCs were analyzed by RNA-seq to identify differentially expressed genes (DEGs), followed by bioinformatics analyses to determine the pathways affected by STAT4.</p><p><strong>Results: </strong>STAT4 expression progressively decreases during the in vitro expansion of hBMSCs, concomitant with the loss of osteogenic differentiation potential. STAT4 knockdown in early passage hBMSCs significantly inhibits their osteogenic differentiation, evidenced by markedly reduced calcium deposition and downregulation of osteogenic markers. STAT4 knockdown also reduces hBMSCs' proliferation ability. Conversely, STAT4 overexpression notably increases calcium deposition in passage 3 to passage 7 cells, suggesting that enhanced STAT4 expression can mitigate the loss of osteogenic potential during hBMSC expansion. Transcriptomic analysis revealed DEGs in STAT4-overexpressing hBMSCs. Subsequent bioinformatics analyses indicated that some of these DEGs are involved in pathways regulating cell differentiation and senescence.</p><p><strong>Conclusion: </strong>The in vitro expansion of hBMSCs leads to the downregulation of STAT4, which contributes to the impairment of their osteogenic potential and may affect cell self-renewability. This study provides insight into the molecular mechanisms underlying the loss of osteogenic differentiation during hBMSC expansion and identifies STAT4 as a potential target for hBMSC-based bone regeneration therapies.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"1-15"},"PeriodicalIF":2.9,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyaluronic Acid Binding Peptide Regulates Extracellular Matrix Deposition and Diminishes Fibroblast Contractility. 透明质酸结合肽调节细胞外基质沉积和降低成纤维细胞收缩性。
IF 2.9 4区 生物学
Cells Tissues Organs Pub Date : 2025-02-25 DOI: 10.1159/000544881
Beth Blake, Whitney Ann Ponwith, Klaus Rischka, Martin Wiesing, Tugba Ozdemir
{"title":"Hyaluronic Acid Binding Peptide Regulates Extracellular Matrix Deposition and Diminishes Fibroblast Contractility.","authors":"Beth Blake, Whitney Ann Ponwith, Klaus Rischka, Martin Wiesing, Tugba Ozdemir","doi":"10.1159/000544881","DOIUrl":"10.1159/000544881","url":null,"abstract":"<p><strong>Introduction: </strong>Fibroblasts are central to a variety of homeostatic events such as wound healing and tissue regeneration. However, their pathologic activation is thought to play roles in a variety of diseases not only limited to fibrosis, foreign body reaction, scleroderma but also cancer metastasis. Biophysical properties of the extracellular matrix (ECM) deposited by an activated fibroblast determine whether there is a pro-regenerative or scarring response. Compared to aged fibroblasts, embryonic fibroblasts were shown to deposit a pro-regenerative ECM characterized by early hyaluronic acid (HA) deposition and increased levels of pro-regenerative collagens such as type III collagen. Since HA is also a regulator of collagen organization, we propose that early accumulation of HA by fibroblasts can facilitate pro-regenerative matrix formation. Given that the molecular weights of HA present in pro-regenerative matrix are higher than synthetic HA, we strategize attracting HA synthesized by fibroblasts. In this study, we used a synthetic peptide sequence known to have affinity to HA as a strategy to instruct fibroblasts to retain HA on the surface. We hypothesized that hyaluronic acid binding peptide (HABP) may instruct fibroblast endogenous HA deposition onto functionalized surfaces.</p><p><strong>Methods: </strong>We functionalized silica glass surfaces with HABP using aminoorganosilane mediated chemisorption and screened primary human dermal fibroblasts (HDFs) for cell morphology, cytoskeletal arrangement, and alpha-smooth muscle actin (α-SMA) expression.</p><p><strong>Results: </strong>Our results show HABP treated surfaces retain higher levels of HA on silica glass compared to control surfaces on fibroblast-derived matrices. Analysis of α-SMA shows increased α-SMA expression on hDFs and increased stress fiber formation. HABP treated surfaces were found to have reduced α-SMA expression. The physical features of collagen fibers deposited by fibroblasts were also organized differently in the presence of HABP.</p><p><strong>Conclusion: </strong>Due to their ability to diminish fibroblast contractility and promote regenerative ECM production, HABPs are a potentially viable strategy to instruct pro-regenerative fibroblasts and can be used therapeutically to treat fibrotic diseases.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"1-14"},"PeriodicalIF":2.9,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143499123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rat Hemolymph Nodes Provide a Direct Communication Site for Macrophages Interacting with Erythrocytes and Mast Cells. 大鼠血淋巴结是巨噬细胞与红细胞和肥大细胞相互作用的直接交流场所。
IF 2.9 4区 生物学
Cells Tissues Organs Pub Date : 2025-02-25 DOI: 10.1159/000543747
Manabu Yamada, Emi Aizawa, Akihiro Dohi, Kenichi Sasaguri, Toshiharu Yamamoto, Tadahide Noguchi
{"title":"Rat Hemolymph Nodes Provide a Direct Communication Site for Macrophages Interacting with Erythrocytes and Mast Cells.","authors":"Manabu Yamada, Emi Aizawa, Akihiro Dohi, Kenichi Sasaguri, Toshiharu Yamamoto, Tadahide Noguchi","doi":"10.1159/000543747","DOIUrl":"10.1159/000543747","url":null,"abstract":"<p><strong>Introduction: </strong>Hemolymph nodes, characterized by erythrocyte rosettes, are found in humans and animals, including rats. The cytoarchitectural features that these nodes exhibit compared with those of ordinary lymph nodes and spleen are unknown. Herein, we describe the cytoarchitecture of rat hemolymph nodes.</p><p><strong>Methods: </strong>We performed immunohistochemical analyses with antibodies against CD68, Iba-1, CD3, CD20, and S-100. Hematoxylin and eosin staining was used to compare findings with sections from ordinary lymph nodes and spleen.</p><p><strong>Results: </strong>Hemolymph nodes exhibited erythrocyte rosettes with macrophages immunopositive for CD68, Iba-1, and CD3, which were rare in the physiologically normal spleen and lymph nodes. Additionally, sinusoidal macrophages often showed close apposition to erythrocytes and mast cells. Accumulation of cells immunoreactive to CD20, a B-lymphocyte marker, was seen only in the germinal centers of ordinary lymph nodes, not in the hemolymph nodes or spleen. Ordinary lymph nodes and spleen showed well-developed reticular configurations of cells with immunoreactivity for S-100, a marker for dendritic cells, unlike hemolymph nodes, suggesting less-developed antigen-presenting ability in the latter. Despite similarities to ordinary lymph nodes and spleen, the direct contact with erythrocytes and mast cells in the hemolymph nodes suggests a facilitation of direct cell-to-cell communication for macrophages, erythrocytes, and mast cells.</p><p><strong>Conclusion: </strong>Our findings imply that the hemolymph nodes are a unique immune organ, differing from ordinary lymph nodes and spleen.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"1-10"},"PeriodicalIF":2.9,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143499029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbonic Anhydrase IV Deficiency Causes Intrauterine Embryonic Loss in Mice. 碳酸酐酶IV缺乏导致小鼠宫内胚胎丢失。
IF 2.9 4区 生物学
Cells Tissues Organs Pub Date : 2025-02-05 DOI: 10.1159/000544000
Sven Schumann, Susanne Camilla Grund, Jaroslaw Thomas Dankert, Ruth Grümmer, Gunther Wennemuth
{"title":"Carbonic Anhydrase IV Deficiency Causes Intrauterine Embryonic Loss in Mice.","authors":"Sven Schumann, Susanne Camilla Grund, Jaroslaw Thomas Dankert, Ruth Grümmer, Gunther Wennemuth","doi":"10.1159/000544000","DOIUrl":"10.1159/000544000","url":null,"abstract":"<p><strong>Introduction: </strong>Members of the carbonic anhydrase gene family, responsible for the reversible hydration of carbon dioxide, participate in several important biological processes including processes involved in fertilization. CAIV has been shown to play a role in sperm cell capacitation and regulation of sperm motility and is present in mature murine placentae. The present study specifically analyzes the distribution of CAIV in female reproductive organs and during early placenta development.</p><p><strong>Methods: </strong>Immunostaining for CAIV was performed on female reproductive organs (ovary, fallopian tube, uterus, vagina) of nonpregnant mice and on implantation sites of early pregnancy between 4.5 and 9.5 days post-coitum (dpc). Sex typing of embryos was performed by PCR using three separated gene combinations for X and Y chromosomes, respectively. Additionally, reproductive outcome of CAIV-deficient mice was determined.</p><p><strong>Results: </strong>CAIV is largely absent in the female reproductive organs of nonpregnant mice. Immunostaining for CAIV was present in the blastocyst and in consecutive stages of the developing embryo. In the endometrial epithelium distant from the implantation chamber, CAIV is induced from 8.5 dpc onward. Moreover, the yolk sac epithelium, the trophoblast giant cells, and the labyrinthine compartment of the developing hemochorial placenta show a strong immunostaining for CAIV. In heterozygous mating, the number of CAIV knockout pups is significantly reduced than was to be expected according to the mendelian rules, while homozygous mating of CAIV knockout mice results in a significant reduction of litter size, which is mainly due to a reduced number of female mice born. Since at 9.5 dpc the number of female embryos is rather higher than that of males, the observed reduction of female offspring appears to be due to a defect in placentation after 9.5 dpc.</p><p><strong>Conclusion: </strong>Thus, CAIV seems to be involved in the signaling network of embryo development, implantation, and placentation.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"1-11"},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060823/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histone Demethylase KDM6B Promotes Chondrogenic Differentiation Potential of Stem Cells from the Apical Papilla via HES1. 组蛋白去甲基化酶KDM6B通过HES1促进根尖乳头干细胞成软骨分化潜能
IF 2.9 4区 生物学
Cells Tissues Organs Pub Date : 2025-01-11 DOI: 10.1159/000543359
Chen Zhang, Xiaomeng Lian, Mengyuan Zhu, Meijun Hu, Dengsheng Xia, Luyuan Jin, Riyue Yu, Jun Li
{"title":"Histone Demethylase KDM6B Promotes Chondrogenic Differentiation Potential of Stem Cells from the Apical Papilla via HES1.","authors":"Chen Zhang, Xiaomeng Lian, Mengyuan Zhu, Meijun Hu, Dengsheng Xia, Luyuan Jin, Riyue Yu, Jun Li","doi":"10.1159/000543359","DOIUrl":"10.1159/000543359","url":null,"abstract":"<p><strong>Introduction: </strong>Mesenchymal stem cell (MSC)-based therapies have emerged as a promising approach for treating articular cartilage injuries. However, enhancing the chondrogenic differentiation potential of MSCs remains a significant challenge. KDM6B, a histone demethylase that specifically removes H3K27me3 marks, is essential in controlling the maturation of chondrocytes. In this study, we examined how KDM6B influences chondrogenic differentiation in SCAPs and investigated the underlying mechanisms involved.</p><p><strong>Methods: </strong>SCAPs were utilized. Alcian blue staining, pellet culture, and cell transplantation in rabbit knee cartilage defect models assessed MSC chondrogenic differentiation. Western blot, real-time RT-PCR, and microarray analysis examined the underlying molecular mechanisms.</p><p><strong>Results: </strong>KDM6B promotes the expression of aggrecan, COL2A1, COL5, glycosaminoglycans, and collagen fibers, while also increasing the COL2/COL1 ratio in SCAPs. In vivo, SCAPs overexpressing KDM6B significantly enhanced the repair and regeneration of knee cartilage and subchondral bone, with higher levels of glycosaminoglycan and COL2 expression observed within the tissue. KDM6B promotes the chondrogenic differentiation potential of SCAPs by repressing HES1. In addition, knockdown of HES1 enhanced the chondrogenic differentiation of SCAPs.</p><p><strong>Conclusions: </strong>KDM6B enhances the differentiation of SCAPs into chondrocytes and demonstrated its effectiveness in the repair and regeneration of cartilage tissue and subchondral bone in vivo experiments. These findings provide an important foundation for future research on the use of dental tissue-derived stem cells to treat cartilage injuries.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"1-14"},"PeriodicalIF":2.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Efficacy of Acupuncture Therapy in the Management of Dyspnea and Other Symptoms Associated with Heart Failure: A Consolidated Review of Trial Data. 针灸疗法治疗呼吸困难及其他心衰相关症状的疗效:试验数据综合评述》。
IF 2.9 4区 生物学
Cells Tissues Organs Pub Date : 2025-01-01 Epub Date: 2024-05-31 DOI: 10.1159/000539593
Vishnu Ganglani, Yong-Jian Geng
{"title":"The Efficacy of Acupuncture Therapy in the Management of Dyspnea and Other Symptoms Associated with Heart Failure: A Consolidated Review of Trial Data.","authors":"Vishnu Ganglani, Yong-Jian Geng","doi":"10.1159/000539593","DOIUrl":"10.1159/000539593","url":null,"abstract":"<p><strong>Introduction: </strong>Acupuncture has been used for pain management for thousands of years. However, it is largely unclear whether this therapeutic approach can effectively reduce heart failure-associated symptoms, including dyspnea. The hypothesis posited in this study was that acupuncture does indeed aid in the management of such symptoms and was motivated by the following statistics that establish a requisite need for efficient management of dyspnea to improve patient outcomes with heart failure. In 2020, an estimated 6.2 million adults in the USA had a heart failure diagnosis; in 2018, 379,800 death certificates reported heart failure; and the national cost of heart failure in 2012 was approximately USD 30.7 billion.</p><p><strong>Methods: </strong>The methodology employed to conduct this study involved review of trial data extracted from review of papers pertaining to acupuncture, symptoms of heart failure, and dyspnea, from academic and clinical data repositories subject to various inclusion and exclusion criteria. Of the initial set of 293 studies identified, the resulting inclusion set comprised 30 studies. The analysis conducted revealed that the highest frequency of combined acupuncture points prescribed for the foregoing search criteria were as follows: BL13, BL23, LU9, LU5, Dingchuan, LI4, PC6, and HT7.</p><p><strong>Results: </strong>A meta-analysis of combined pooled p values for the studies revealed that acupuncture does aid in the management of symptoms of dyspnea and heart failure, subject to various limitations including but not limited to heterogeneity inherent between the studies in the inclusion set that were analyzed. Such limitations underscore the need to restrict generalizations from the conclusions of this study.</p><p><strong>Conclusion: </strong>The impact and novelty of this research study is its attempt to target the apparent paucity of literature that focuses on the management of dyspnea specifically in the context of heart failure with acupuncture and to bridge the gap of the application of acupuncture research on dyspnea to the cardiovascular context of heart failure. Notwithstanding the meta-analysis undertaken under this review study, further statistical analysis and a pilot study are warranted to consolidate or nullify the results of the research.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"52-75"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Assessment of Mitochondria Isolation Buffers for Optimizing Tissue-Specific Yields in Buffalo. 水牛线粒体分离缓冲液优化组织特异性产量的比较评估
IF 2.9 4区 生物学
Cells Tissues Organs Pub Date : 2025-01-01 Epub Date: 2024-10-08 DOI: 10.1159/000541733
Sweta Kumari, E M Sadeesh
{"title":"Comparative Assessment of Mitochondria Isolation Buffers for Optimizing Tissue-Specific Yields in Buffalo.","authors":"Sweta Kumari, E M Sadeesh","doi":"10.1159/000541733","DOIUrl":"10.1159/000541733","url":null,"abstract":"<p><strong>Introduction: </strong>Mitochondrial studies are crucial for assessing livestock health and performance. While extensive research has been done on cattle and pigs, the influence of mitochondria in Indian buffalo remains unexplored. Therefore, in order to understand functions of mitochondria, their energy-related processes, or any additional mitochondrial traits in buffaloes, it is imperative to isolate high-yield mitochondria with purity and functionality. Mitochondria are extracted by few conventional buffers. These buffers were previously characterized for their effectiveness in isolating mitochondria from rodent and human tissues. Therefore, the present study is to assess the performance of mitochondria isolation buffers specifically in buffalo tissues.</p><p><strong>Methods: </strong>The study involved isolation of mitochondria from four different tissues, i.e., liver, brain, heart and muscles of slaughtered buffalo (n = 3), using: (i) Tris-Mannitol buffer (ii) Tris-Sucrose buffer, and (iii) MOPS-Sucrose buffer. Buffer efficiency in preserving high fidelity during mitochondria isolation was assessed by comparison with Cayman's MitoCheck® Mitochondrial Isolation Kit (control). Further mitochondrial purity and functionality was assessed through comparative estimation of protein concentration and marker enzyme assays, respectively.</p><p><strong>Results: </strong>Our results revealed insights into the suitability of specific buffer for functional mitochondria isolation from specific type of buffalo tissue. Notably for obtaining high quality functional mitochondria from buffalo, MOPS-Sucrose buffer appeared optimal for soft tissues (liver and brain), while Tris-Mannitol buffer was efficient for hard tissues (muscles and heart).</p><p><strong>Conclusions: </strong>Thus, our research highlights the influence of buffer composition and tissue-specific variations in buffer effectiveness on mitochondrial activity in different tissues, leading to improved mitochondrial isolation in buffalo.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"206-218"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum. 勘误。
IF 2.9 4区 生物学
Cells Tissues Organs Pub Date : 2025-01-01 Epub Date: 2024-11-26 DOI: 10.1159/000542106
{"title":"Erratum.","authors":"","doi":"10.1159/000542106","DOIUrl":"10.1159/000542106","url":null,"abstract":"","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"76"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142726357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coculture of Chondrocytes and Stem Cells: A Review of Head and Neck Cell Lines for Cartilage Regeneration. 软骨细胞和干细胞的共培养:用于软骨再生的头颈部细胞系综述。
IF 2.9 4区 生物学
Cells Tissues Organs Pub Date : 2025-01-01 Epub Date: 2024-03-21 DOI: 10.1159/000538461
Michael Fook-Ho Lee, Daniel Steffens, Johnson H Y Chung, Steven Posniak, Kai Cheng, Jonathan Clark, Gordon Wallace, Payal Mukherjee
{"title":"Coculture of Chondrocytes and Stem Cells: A Review of Head and Neck Cell Lines for Cartilage Regeneration.","authors":"Michael Fook-Ho Lee, Daniel Steffens, Johnson H Y Chung, Steven Posniak, Kai Cheng, Jonathan Clark, Gordon Wallace, Payal Mukherjee","doi":"10.1159/000538461","DOIUrl":"10.1159/000538461","url":null,"abstract":"<p><strong>Introduction: </strong>Bioprinting, using \"bio-inks\" consisting of living cells, supporting structures, and biological motifs to create customized constructs, is an emerging technique that aims to overcome the challenges of cartilaginous reconstruction of head and neck structures. Several living cell lines and culturing methods have been explored as bio-inks with varying efficacy. Coculture of primary chondrocytes and stem cells (SCs) is one technique well established for degenerative joint disease treatment, with potential for use in expanding chondrocyte populations for bio-inks. This study aimed to evaluate the techniques for coculture of primary chondrocytes and SCs for head and neck cartilage regeneration.</p><p><strong>Methods: </strong>A literature review was performed through OVID/Web of Science/MEDLINE/BIOSIS Previews/Embase. Studies reporting on chondrocytes and SCs in conjunction with coculture or cartilage regeneration were included. Studies not reporting on findings from chondrocytes/SCs of the head and neck were excluded. Extracted data included cell sources, coculture ratios, and histological, biochemical, and clinical outcomes.</p><p><strong>Results: </strong>Fifteen studies met inclusion criteria. Auricular cartilage was the most common chondrocyte source (n = 10), then nasal septum (n = 5), articular (n = 1), and tracheal cartilage (n = 1). Bone marrow was the most common SC source (n = 9) then adipose tissue (n = 7). Techniques varied, with coculture ratios ranging from 1:1 to 1:10. All studies reported coculture to be superior to SC monoculture by all outcomes. Most studies reported superiority or equivalence of coculture to chondrocyte monoculture by all outcomes. When comparing clinical outcomes, coculture constructs were equivalent to chondrocyte monoculture in diameter and equivalent or inferior in wet weight and height.</p><p><strong>Conclusion: </strong>Coculture of primary chondrocytes and SCs is a promising technique for expanding chondrocyte populations, with at least equivalence to chondrocyte monoculture and superior to SC monoculture when seeded at the same chondrocyte densities. However, there remains a lack of consensus regarding the optimal cell sources and coculture ratios.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"36-51"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140183897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信