Cerebral cortex最新文献

筛选
英文 中文
Models of actor-specific range of motion are encoded in the extrastriate body area.
IF 2.9 2区 医学
Cerebral cortex Pub Date : 2025-03-06 DOI: 10.1093/cercor/bhaf027
Emmanuelle Bellot, Antoine Vandenberghe, Gilles Vannuscorps
{"title":"Models of actor-specific range of motion are encoded in the extrastriate body area.","authors":"Emmanuelle Bellot, Antoine Vandenberghe, Gilles Vannuscorps","doi":"10.1093/cercor/bhaf027","DOIUrl":"https://doi.org/10.1093/cercor/bhaf027","url":null,"abstract":"<p><p>Models of actor-specific range of motion (or biomechanical limits) shapes perception and (inter)actions. This functional magnetic resonance imaging study tested the hypothesis that these models are encoded in the extrastriate body area. Participants were first introduced with the maximal amplitude of arm and leg movements of a \"rigid\" and a \"flexible\" actor. Then, we measured the blood oxygenation level dependent response in 25 participants while they watched video clips depicting these actors performing either \"small\" movements that were \"possible\" to perform for both actors, \"large\" ones that were \"impossible\" for both actors and \"intermediate\" ones that were possible only for the \"flexible\" actor. Results aligned with the 2 predictions of our hypothesis: (i) extrastriate body area responded more strongly to impossible than possible movements; (ii) extrastriate body area categorized intermediate movements as \"possible\" or \"impossible\" depending on each actor's specific range of motion. The results of additional analyses suggested that extrastriate body area encodes actor-specific range of motion at the level of specific body parts, and as a probability function. Finally, the results of whole brain and functional connectivity analyses suggested that the right posterior superior temporal sulcus may also play an important role in encoding information about actor-specific biomechanical limits.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143656130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing positive and negative quantitative susceptibility values in the cortex following mild traumatic brain injury: a depth- and curvature-based study.
IF 2.9 2区 医学
Cerebral cortex Pub Date : 2025-03-06 DOI: 10.1093/cercor/bhaf059
Christi A Essex, Jenna L Merenstein, Devon K Overson, Trong-Kha Truong, David J Madden, Mayan J Bedggood, Helen Murray, Samantha J Holdsworth, Ashley W Stewart, Catherine Morgan, Richard L M Faull, Patria Hume, Alice Theadom, Mangor Pedersen
{"title":"Characterizing positive and negative quantitative susceptibility values in the cortex following mild traumatic brain injury: a depth- and curvature-based study.","authors":"Christi A Essex, Jenna L Merenstein, Devon K Overson, Trong-Kha Truong, David J Madden, Mayan J Bedggood, Helen Murray, Samantha J Holdsworth, Ashley W Stewart, Catherine Morgan, Richard L M Faull, Patria Hume, Alice Theadom, Mangor Pedersen","doi":"10.1093/cercor/bhaf059","DOIUrl":"10.1093/cercor/bhaf059","url":null,"abstract":"<p><p>Evidence has linked head trauma to increased risk factors for neuropathology, including mechanical deformation of the sulcal fundus and, later, perivascular accumulation of hyperphosphorylated tau adjacent to these spaces related to chronic traumatic encephalopathy. However, little is known about microstructural abnormalities and cellular dyshomeostasis in acute mild traumatic brain injury in humans, particularly in the cortex. To address this gap, we designed the first architectonically motivated quantitative susceptibility mapping study to assess regional patterns of net positive (iron-related) and net negative (myelin-, calcium-, and protein-related) magnetic susceptibility across 34 cortical regions of interest following mild traumatic brain injury. Bilateral, between-group analyses sensitive to cortical depth and curvature were conducted between 25 males with acute (<14 d) sports-related mild traumatic brain injury and 25 age-matched male controls. Results suggest a trauma-induced increase in net positive susceptibility focal to superficial, perivascular-adjacent spaces in the parahippocampal sulcus. Decreases in net negative susceptibility values in distinct voxel populations within the same region indicate a potential dual pathology of neural substrates. These mild traumatic brain injury-related patterns were distinct from age-related processes revealed by correlation analyses. Our findings suggest depth- and curvature-specific deposition of biological substrates in cortical tissue convergent with features of misfolded proteins in trauma-related neurodegeneration.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural pathways related to the subventricular zone are decreased in volume with altered microstructure in young adult males with autism spectrum disorder.
IF 2.9 2区 医学
Cerebral cortex Pub Date : 2025-03-06 DOI: 10.1093/cercor/bhaf041
Keita Tsujimura, Alpen Ortug, José Luis Alatorre Warren, Tadashi Shiohama, Christopher J McDougle, Rachel E Marcus, Chieh-En Jane Tseng, Nicole R Zürcher, Nathaniel D Mercaldo, Susan Faja, Alika Maunakea, Jacob Hooker, Emi Takahashi
{"title":"Structural pathways related to the subventricular zone are decreased in volume with altered microstructure in young adult males with autism spectrum disorder.","authors":"Keita Tsujimura, Alpen Ortug, José Luis Alatorre Warren, Tadashi Shiohama, Christopher J McDougle, Rachel E Marcus, Chieh-En Jane Tseng, Nicole R Zürcher, Nathaniel D Mercaldo, Susan Faja, Alika Maunakea, Jacob Hooker, Emi Takahashi","doi":"10.1093/cercor/bhaf041","DOIUrl":"10.1093/cercor/bhaf041","url":null,"abstract":"<p><p>Autism spectrum disorder is a neurodevelopmental condition characterized by reduced social communication and repetitive behaviors. Altered neurogenesis, including disturbed neuronal migration, has been implicated in autism spectrum disorder. Using diffusion MRI, we previously identified neuronal migration pathways in the human fetal brain and hypothesized that similar pathways persist into adulthood, with differences in volume and microstructural characteristics between individuals with autism spectrum disorder and controls. We analyzed diffusion MRI-based tractography of subventricular zone-related pathways in 15 young adult men with autism spectrum disorder and 18 controls at Massachusetts General Hospital, with validation through the Autism Imaging Data Exchange II dataset. Participants with autism spectrum disorder had reduced subventricular zone pathway volumes and fractional anisotropy compared to controls. Furthermore, subventricular zone pathway volume was positively correlated (r: 0.68; 95% CI: 0.25 to 0.88) with symptom severity, suggesting that individuals with more severe symptoms tended to have larger subventricular zone pathway volumes, normalized by brain size. Analysis of the Autism Imaging Data Exchange cohort confirmed these findings of reduced subventricular zone pathway volumes in autism spectrum disorder. While some of these pathways may potentially include inaccurately disconnected pathways that go through the subventricular zone, our results suggest that diffusion MRI-based tractography pathways anatomically linked to the periventricular region are associated with certain symptom types in adult males with autism spectrum disorder.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143662448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic resource allocation strategies in the human brain under cognitive overload: evidence from time-varying brain network analysis. 认知超负荷下人脑的动态资源分配策略:来自时变脑网络分析的证据。
IF 2.9 2区 医学
Cerebral cortex Pub Date : 2025-03-06 DOI: 10.1093/cercor/bhaf048
Zhongrui Li, Li Tong, Ying Zeng, Changfu Pei, Bin Yan
{"title":"Dynamic resource allocation strategies in the human brain under cognitive overload: evidence from time-varying brain network analysis.","authors":"Zhongrui Li, Li Tong, Ying Zeng, Changfu Pei, Bin Yan","doi":"10.1093/cercor/bhaf048","DOIUrl":"https://doi.org/10.1093/cercor/bhaf048","url":null,"abstract":"<p><p>The impact of excessive cognitive workload on personal work and life is widely recognized, yet the brain information processing mechanisms under cognitive overload remain unclear. This study employed a spatial configuration task, combined with time-varying brain network analysis and source localization techniques based on electroencephalography signals, to delve into the dynamic adjustment processes of the brain among healthy participants during cognitive overload. The results revealed that under cognitive overload, the overall activation level of the brain significantly decreases, with characteristics of delayed responses. Further analysis indicated that under overload, the brain network connectivity in the right hemisphere brain networks closely associated with spatial object recognition and localization was weakened. In contrast, the brain network connections between the left hemisphere are enhanced. These changes suggest that during cognitive overload, the brain prioritizes resource allocation to support spatial memory functions, which might lead to restricted resources for subsequent spatial information processing. Notably, the significant differences in brain network connectivity observed in the hippocampus, fusiform gyrus, and superior frontal gyrus make them important potential markers for identifying cognitive overload states during spatial configuration tasks. This study provides a fresh perspective and scientific foundation for understanding the impact of cognitive overload on work performance.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143728883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurophysiological profiles underlying action withholding and action discarding.
IF 2.9 2区 医学
Cerebral cortex Pub Date : 2025-02-05 DOI: 10.1093/cercor/bhaf026
Roula Jamous, Viola Mocke, Wilfried Kunde, Bernhard Pastötter, Christian Beste
{"title":"Neurophysiological profiles underlying action withholding and action discarding.","authors":"Roula Jamous, Viola Mocke, Wilfried Kunde, Bernhard Pastötter, Christian Beste","doi":"10.1093/cercor/bhaf026","DOIUrl":"https://doi.org/10.1093/cercor/bhaf026","url":null,"abstract":"<p><p>Although inhibitory control is essential to goal-directed behavior, not all inhibition is the same: Previous research distinguished discarding an action plan from simply withholding it, suggesting separate neurophysiological mechanisms. This study tracks the neurophysiological signatures of both using time-frequency transformation and beamforming in n = 34 healthy individuals. We show that discarding an action plan reduces working memory load, with stronger initial theta band activity compared to withholding it. This oscillatory difference was localized in the (para-)hippocampus and anterior temporal lobe, likely reflecting the need to dissolve action plan features first to enable the following decrease of working memory load. Contrary, when exposed to the embedded stimulus, withholding was associated with higher theta, alpha, and beta band activity relative to discarding. This study advances our understanding of inhibition by revealing distinct neurophysiological mechanisms and functional neuroanatomical structures involved in withholding versus discarding an action.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic analyses identify brain functional networks associated with the risk of Parkinson's disease and drug-induced parkinsonism. 基因分析确定了与帕金森氏病和药物性帕金森氏症风险相关的脑功能网络。
IF 2.9 2区 医学
Cerebral cortex Pub Date : 2025-02-05 DOI: 10.1093/cercor/bhae506
Lin Chen, Ming-Juan Fang, Xu-En Yu, Yin Xu
{"title":"Genetic analyses identify brain functional networks associated with the risk of Parkinson's disease and drug-induced parkinsonism.","authors":"Lin Chen, Ming-Juan Fang, Xu-En Yu, Yin Xu","doi":"10.1093/cercor/bhae506","DOIUrl":"10.1093/cercor/bhae506","url":null,"abstract":"<p><p>Brain functional networks are associated with parkinsonism in observational studies. However, the causal effects between brain functional networks and parkinsonism remain unclear. We aimed to assess the potential bidirectional causal associations between 191 brain resting-state functional magnetic resonance imaging (rsfMRI) phenotypes and parkinsonism including Parkinson's disease (PD) and drug-induced parkinsonism (DIP). We used Mendelian randomization (MR) to assess the bidirectional associations between brain rsfMRI phenotypes and parkinsonism, followed by several sensitivity analyses for robustness validation. In the forward MR analyses, we found that three rsfMRI phenotypes genetically determined the risk of parkinsonism. The connectivity in the visual network decreased the risk of PD (OR = 0.391, 95% CI = 0.235 ~ 0.649, P = 2.83 × 10-4, P_FDR = 0.039). The connectivity of salience and motor networks increased the risk of DIP (OR = 4.102, 95% CI = 1.903 ~ 8.845, P = 3.17 × 10-4, P_FDR = 0.044). The connectivity of limbic and default mode networks increased the risk of DIP (OR = 14.526, 95% CI = 3.130 ~ 67.408, P = 6.32 × 10-4, P_FDR = 0.0437). The reverse MR analysis indicated that PD and DIP had no effect on brain rsfMRI phenotypes. Our findings reveal causal relationships between brain functional networks and parkinsonism, providing important interventional and therapeutic targets for different parkinsonism.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging-related losses in dopamine D2/3 receptor availability are linked to working-memory decline across five years. 与衰老相关的多巴胺D2/3受体可用性的丧失与五年内工作记忆的下降有关。
IF 2.9 2区 医学
Cerebral cortex Pub Date : 2025-02-05 DOI: 10.1093/cercor/bhae481
Goran Papenberg, Nina Karalija, Alireza Salami, Jarkko Johansson, Anders Wåhlin, Micael Andersson, Jan Axelsson, Douglas D Garrett, Katrine Riklund, Ulman Lindenberger, Lars Nyberg, Lars Bäckman
{"title":"Aging-related losses in dopamine D2/3 receptor availability are linked to working-memory decline across five years.","authors":"Goran Papenberg, Nina Karalija, Alireza Salami, Jarkko Johansson, Anders Wåhlin, Micael Andersson, Jan Axelsson, Douglas D Garrett, Katrine Riklund, Ulman Lindenberger, Lars Nyberg, Lars Bäckman","doi":"10.1093/cercor/bhae481","DOIUrl":"10.1093/cercor/bhae481","url":null,"abstract":"<p><p>Although age differences in the dopamine system have been suggested to contribute to age-related cognitive decline based on cross-sectional data, recent large-scale cross-sectional studies reported only weak evidence for a correlation among aging, dopamine receptor availability, and cognition. Regardless, longitudinal data remain essential to make robust statements about dopamine losses as a basis for cognitive aging. We present correlations between changes in D2/3 dopamine receptor availability and changes in working memory measured over 5 yr in healthy, older adults (n = 128, ages 64 to 68 yr at baseline). Greater decline in D2/3 dopamine receptor availability in working memory-relevant regions (caudate, middle frontal cortex, hippocampus) was related to greater decline in working memory performance in individuals who exhibited working memory reductions across time (n = 43; caudate: rs = 0.494; middle frontal cortex: rs = 0.506; hippocampus; rs = 0.423), but not in individuals who maintained performance (n = 41; caudate: rs = 0.052; middle frontal cortex: rs = 0.198; hippocampus; rs = 0.076). The dopamine-working memory link in decliners was not observed in the orbitofrontal cortex, which does not belong to the core working memory network. Our longitudinal analyses support the notion that aging-related changes in the dopamine system contribute to working memory decline in aging.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental maturation of millimeter-scale functional networks across brain areas.
IF 2.9 2区 医学
Cerebral cortex Pub Date : 2025-02-05 DOI: 10.1093/cercor/bhaf007
Nathaniel J Powell, Bettina Hein, Deyue Kong, Jonas Elpelt, Haleigh N Mulholland, Ryan A Holland, Matthias Kaschube, Gordon B Smith
{"title":"Developmental maturation of millimeter-scale functional networks across brain areas.","authors":"Nathaniel J Powell, Bettina Hein, Deyue Kong, Jonas Elpelt, Haleigh N Mulholland, Ryan A Holland, Matthias Kaschube, Gordon B Smith","doi":"10.1093/cercor/bhaf007","DOIUrl":"10.1093/cercor/bhaf007","url":null,"abstract":"<p><p>Processing sensory information, generating perceptions, and shaping behavior engages neural networks in brain areas with highly varied representations, ranging from unimodal sensory cortices to higher-order association areas. In early development, these areas share a common distributed and modular functional organization, but it is not known whether this undergoes a common developmental trajectory, or whether such organization persists only in some brain areas. Here, we examine the development of network organization across diverse cortical regions in ferrets using in vivo wide field calcium imaging of spontaneous activity. In both primary sensory (visual, auditory, and somatosensory) and higher order association (prefrontal and posterior parietal) areas, spontaneous activity remained significantly modular with pronounced millimeter-scale correlations over a 3-wk period spanning eye opening and the transition to externally-driven sensory activity. Over this period, cortical areas exhibited a roughly similar set of developmental changes, along with area-specific differences. Modularity and long-range correlation strength generally decreased with age, along with increases in the dimensionality of activity, although these effects were not uniform across all brain areas. These results indicate an interplay of area-specific factors with a conserved developmental program that maintains modular functional networks, suggesting modular organization may be involved in functional representations in diverse brain areas.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Born to count: a biological basis of mathematics.
IF 2.9 2区 医学
Cerebral cortex Pub Date : 2025-02-05 DOI: 10.1093/cercor/bhaf023
Toshiya Matsushima
{"title":"Born to count: a biological basis of mathematics.","authors":"Toshiya Matsushima","doi":"10.1093/cercor/bhaf023","DOIUrl":"https://doi.org/10.1093/cercor/bhaf023","url":null,"abstract":"<p><p>As languages, mathematics is a biological product and thus based on causal processes of two time scales, namely neural mechanisms and evolution. In this commentary, I will try to figure out possible scenarios responsible for the chick mathematics raised by the target article, focusing on discreteness and transposability of natural numbers.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commentary on "Is there an innate sense of number in the brain?" by Lorenzi, Kobylkov, and Vallortigara.
IF 2.9 2区 医学
Cerebral cortex Pub Date : 2025-02-05 DOI: 10.1093/cercor/bhaf015
Brian Butterworth
{"title":"Commentary on \"Is there an innate sense of number in the brain?\" by Lorenzi, Kobylkov, and Vallortigara.","authors":"Brian Butterworth","doi":"10.1093/cercor/bhaf015","DOIUrl":"https://doi.org/10.1093/cercor/bhaf015","url":null,"abstract":"<p><p>Is there an innate sense of number? Lorenzi et al. (2025) argue that the ability to extract numerical information from the environment is vital for a wide range of species, suggesting \"a likely common origin\". Studies in different species show that the neural mechanism for doing this-numerosity-selective neurons-can be found in animals with no opportunity to learn. This leaves open important questions: How do numerosity-selective neurons code for numerosities? Is the code the same in different species? How do the neurons participate in arithmetical operations?</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信