Cerebral cortexPub Date : 2024-11-05DOI: 10.1093/cercor/bhae433
Michael W Reimann, Daniela Egas Santander, András Ecker, Eilif B Muller
{"title":"Specific inhibition and disinhibition in the higher-order structure of a cortical connectome.","authors":"Michael W Reimann, Daniela Egas Santander, András Ecker, Eilif B Muller","doi":"10.1093/cercor/bhae433","DOIUrl":"10.1093/cercor/bhae433","url":null,"abstract":"<p><p>Neurons are thought to act as parts of assemblies with strong internal excitatory connectivity. Conversely, inhibition is often reduced to blanket inhibition with no targeting specificity. We analyzed the structure of excitation and inhibition in the MICrONS $mm^{3}$ dataset, an electron microscopic reconstruction of a piece of cortical tissue. We found that excitation was structured around a feed-forward flow in large non-random neuron motifs with a structure of information flow from a small number of sources to a larger number of potential targets. Inhibitory neurons connected with neurons in specific sequential positions of these motifs, implementing targeted and symmetrical competition between them. None of these trends are detectable in only pairwise connectivity, demonstrating that inhibition is structured by these large motifs. While descriptions of inhibition in cortical circuits range from non-specific blanket-inhibition to targeted, our results describe a form of targeting specificity existing in the higher-order structure of the connectome. These findings have important implications for the role of inhibition in learning and synaptic plasticity.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Causal relationship between cortical structural changes and onset of anxiety disorder: evidence from Mendelian randomization.","authors":"Fei Teng, Mengqi Wang, Zhangyu Lu, Chunyu Zhang, Linglong Xiao, ZhaoMing Chen, Mengshuang Huang, Linglin Xie, Zheyu Chen, Wei Wang","doi":"10.1093/cercor/bhae440","DOIUrl":"10.1093/cercor/bhae440","url":null,"abstract":"<p><p>Previous studies have reported a correlation between anxiety disorders and changes in brain structure, yet the specific alterations in brain region volumes remain unclear. This study aimed to infer the causal relationship between anxiety disorders and changes in brain structure volume through Mendelian Randomization analysis. We selected 63 cortical structure volumes from the GWAS database as exposure data and anxiety disorder data from the FinnGen and UK Biobank databases as outcomes. We found a significant correlation between atrophy in the Left precentral volume area (Odds Ratio [OR] = 0.935, 95% Confidence intervals [CI]: 0.891-0.981, P value, P = 0.007) and an increased risk of anxiety disorders. Additionally, changes identified in specific brain regions, such as atrophy in the Right rostral anterior cingulate area (OR = 0.993, 95% CI: 0.987-0.999, P = 0.025) and increased volume in the Left superior parietal area (OR = 1.001, 95% CI: 1.000-1.001, P = 0.028), may correlate with an increased risk of anxiety disorders. Furthermore, both phenotypes demonstrated directional consistency in their respective and overall meta-analyzed OR values pre- and post-merger, enhancing the reliability of the results. This study elucidates the causal relationship between anxiety disorders and specific brain structures, providing new insights for further research into psychiatric disorders.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-11-05DOI: 10.1093/cercor/bhae441
Niccolò Butti, Cosimo Urgesi, Stergios Makris, Francis P McGlone, Rosario Montirosso, Valentina Cazzato
{"title":"Neurophysiological evidence of motor contribution to vicarious affective touch.","authors":"Niccolò Butti, Cosimo Urgesi, Stergios Makris, Francis P McGlone, Rosario Montirosso, Valentina Cazzato","doi":"10.1093/cercor/bhae441","DOIUrl":"10.1093/cercor/bhae441","url":null,"abstract":"<p><p>Understanding observed interpersonal touch, particularly the so-called affective touch targeting the CT fibers, is essential for social interactions. Research has documented that observing other people being touched activates the same cortical areas involved in direct tactile experiences. However, observing interpersonal touch also activates an inner simulation of the movements in the observer's motor system. Given the social and affective significance of CT-optimal touch, the present study tested the hypothesis that observing stroking touches targeting or not targeting the CT fibers system might distinctly influence motor resonance to vicarious touch. With this aim, we used single-pulse transcranial magnetic stimulation and motor-evoked potentials recording while participants observed video clips of interpersonal touch events at different stroking velocities. We found a modulation of motor system activity, particularly a decrease in corticospinal excitability, when observing CT-optimal touch as opposed to non-CT-optimal velocities, a mechanism that might aid in understanding the touchee's feelings during vicarious interpersonal touch. Moreover, participants with higher reliance on bodily cues to be emotionally aware showed greater motor suppression for CT-optimal compared to non-CT-optimal velocities. These results shed light on the complex interplay between motor and somatosensory systems in social touch perception and emphasize the importance of affective touch in human social interactions.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540462/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Altered gait speed and brain network connectivity in Parkinson's disease.","authors":"Shichan Wang, Yi Xiao, Yanbing Hou, Chunyu Li, Junyu Lin, Tianmi Yang, Ningning Che, Qirui Jiang, Xiaoting Zheng, Jiyong Liu, Huifang Shang","doi":"10.1093/cercor/bhae429","DOIUrl":"https://doi.org/10.1093/cercor/bhae429","url":null,"abstract":"<p><p>Slow gait speed and disrupted brain network connectivity are common in patients with Parkinson's disease (PD). This study aimed to clarify the relationship between gait speed and clinical characteristics in PD, and explore the underlying brain network mechanisms. Forty-two PD patients and 20 healthy controls (HC) were recruited. Statistical independent component analysis and correlation analysis were employed to investigate underlying neural mechanisms and relationships. PD patients exhibited significantly slower gait speed, which showed a significant negative correlation with postural instability and gait disturbance scores. Network connectivity analysis revealed decreased intranetwork functional connectivity (FC) within visual network (VN) and cerebellum network (CN), but increased internetwork FC between CN and both sensorimotor network (SMN) and frontoparietal network (FPN) in PD patients compared to HC. The slow gait speed PD subgroup demonstrated increased intranetwork FC within SMN and VN, along with decreased FC between VN and both FPN and default mode network. Correlation analyses revealed negative correlation between gait speed and FC of CN and positive correlation to FC of CN-SMN. Our study identified relationships between gait speed and clinical characteristics, and corresponding network connectivity alterations in PD patients, providing insights into the neural mechanisms underlying gait impairments in PD.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Changes in resting-state functional connectivity of large-scale brain networks in bulimia nervosa: evidence from causal analysis.","authors":"Jiani Wang, Xinghao Wang, Yiling Wang, Weihua Li, Zhanjiang Li, Lirong Tang, Xinyu Huang, Marcin Grzegorzek, Qian Chen, Zhenchang Wang, Peng Zhang","doi":"10.1093/cercor/bhae430","DOIUrl":"https://doi.org/10.1093/cercor/bhae430","url":null,"abstract":"<p><p>Bulimia nervosa (BN) has been observationally linked to the functional connectivity (FC) of large-scale brain networks, but the biological mechanisms remain unclear. This study used two-sample Mendelian randomization (MR) with genetic variations as instrumental variables (IVs) to explore potential causal relationships between FC and BN. Summary data from genome-wide association studies (GWAS) involving 2,564 individuals were analyzed to identify genetically predicted BN. Functional magnetic resonance imaging parameters and materials were sourced from the UK Biobank. The variables underwent independent component analysis processing by the database to generate the final GWAS dataset. Various methods, including MR Pleiotropy RESidual Sum and Outlier, MR Egger, and weighted median, were employed to detect heterogeneity and pleiotropy, with inverse variance weighting serving as the principal estimation method (P < 0.05). The FC imaging-derived phenotypes revealed that BN exerted a causal influence on the FC between large-scale networks, including the visual network, default mode network (DMN), frontoparietal network, somatosensory network (SSN), and ventral attention network. Additionally, BN had a causal impact on the within-network FC of both the DMN and SSN. The study provides evidence that BN leads to further changes in FC patterns within and between large-scale brain networks.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-11-05DOI: 10.1093/cercor/bhae444
Veronika Zlatkina, Stephen Frey, Michael Petrides
{"title":"Monitoring of nonspatial information within working memory in the common marmoset (Callithrix jacchus).","authors":"Veronika Zlatkina, Stephen Frey, Michael Petrides","doi":"10.1093/cercor/bhae444","DOIUrl":"https://doi.org/10.1093/cercor/bhae444","url":null,"abstract":"<p><p>The mid-dorsolateral prefrontal cortical region (areas 46 and 9/46) is critical for the monitoring of information in working memory both in the macaque monkey brain and the human brain. The presence of this cytoarchitectonic region in the New World marmoset brain was in debate, but recent anatomical evidence demonstrated a limited area 46. This finding raised the question of the extent to which the marmoset brain can support the cognitive control process of monitoring information within working memory. This cognitive control process was assessed in adult marmosets and was shown to be limited to the monitoring of only two items in contrast to macaque monkeys, who can monitor as many as five items in working memory. The results are consistent with the limited development of the relevant prefrontal region in the marmoset and contribute to understanding the evolution of higher cognitive control processes in the primate brain.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-11-05DOI: 10.1093/cercor/bhae447
Eden Zohar, Stas Kozak, Dekel Abeles, Moni Shahar, Nitzan Censor
{"title":"Convolutional neural networks uncover the dynamics of human visual memory representations over time.","authors":"Eden Zohar, Stas Kozak, Dekel Abeles, Moni Shahar, Nitzan Censor","doi":"10.1093/cercor/bhae447","DOIUrl":"https://doi.org/10.1093/cercor/bhae447","url":null,"abstract":"<p><p>The ability to accurately retrieve visual details of past events is a fundamental cognitive function relevant for daily life. While a visual stimulus contains an abundance of information, only some of it is later encoded into long-term memory representations. However, an ongoing challenge has been to isolate memory representations that integrate various visual features and uncover their dynamics over time. To address this question, we leveraged a novel combination of empirical and computational frameworks based on the hierarchal structure of convolutional neural networks and their correspondence to human visual processing. This enabled to reveal the contribution of different levels of visual representations to memory strength and their dynamics over time. Visual memory strength was measured with distractors selected based on their shared similarity to the target memory along low or high layers of the convolutional neural network hierarchy. The results show that visual working memory relies similarly on low and high-level visual representations. However, already after a few minutes and on to the next day, visual memory relies more strongly on high-level visual representations. These findings suggest that visual representations transform from a distributed to a stronger high-level conceptual representation, providing novel insights into the dynamics of visual memory over time.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-11-05DOI: 10.1093/cercor/bhae448
Judith Sattelberger, Hamed Haque, Joonas J Juvonen, Felix Siebenhühner, Jaakko Matias Palva, Satu Palva
{"title":"Local and interareal alpha and low-beta band oscillation dynamics underlie the bilateral field advantage in visual working memory.","authors":"Judith Sattelberger, Hamed Haque, Joonas J Juvonen, Felix Siebenhühner, Jaakko Matias Palva, Satu Palva","doi":"10.1093/cercor/bhae448","DOIUrl":"10.1093/cercor/bhae448","url":null,"abstract":"<p><p>Visual working memory has a limited maximum capacity, which can be larger if stimuli are presented bilaterally vs. unilaterally. However, the neuronal mechanisms underlying this bilateral field advantage are not known. Visual working memory capacity is predicted by oscillatory delay-period activity, specifically, by a decrease in alpha (8 to 12 Hz) band amplitudes in posterior brain regions reflecting attentional deployment and related shifts in excitation, as well as a concurrent increase of prefrontal oscillation amplitudes and interareal synchronization in multiple frequencies reflecting active maintenance of information. Here, we asked whether posterior alpha suppression or prefrontal oscillation enhancement explains the bilateral field advantage. We recorded brain activity with high-density electroencephalography, while subjects (n = 26, 14 males) performed a visual working memory task with uni- and bilateral visual stimuli. The bilateral field advantage was associated with early suppression of low-alpha (6 to 10 Hz) and alpha-beta (10 to 17 Hz) band amplitudes, and a subsequent alpha-beta amplitude increase, which, along with a concurrent load-dependent interareal synchronization in the high-alpha band (10 to 15 Hz), correlated with hit rates and reaction times and thus predicted higher maximum capacities in bilateral than unilateral visual working memory. These results demonstrate that the electrophysiological basis of the bilateral field advantage in visual working memory is both in the changes in attentional deployment and enhanced interareal integration.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-11-05DOI: 10.1093/cercor/bhae442
Giuseppe Lai, David Landi, Carmen Vidaurre, Joydeep Bhattacharya, Maria Herrojo Ruiz
{"title":"Cardiac cycle modulates alpha and beta suppression during motor imagery.","authors":"Giuseppe Lai, David Landi, Carmen Vidaurre, Joydeep Bhattacharya, Maria Herrojo Ruiz","doi":"10.1093/cercor/bhae442","DOIUrl":"https://doi.org/10.1093/cercor/bhae442","url":null,"abstract":"<p><p>Previous interoception research has demonstrated that sensory processing is reduced during cardiac systole, an effect associated with diminished cortical excitability, possibly due to heightened baroreceptor activity. This study aims to determine how phases of the cardiac cycle-systole and diastole-modulate neural sensorimotor activity during motor imagery (MI) and motor execution (ME). We hypothesised that MI performance, indexed by enhanced suppression of contralateral sensorimotor alpha (8-13 Hz) and beta (14-30 Hz) activity, would be modulated by the cardiac phases, with improved performance during diastole due to enhanced sensory processing of movement cues. Additionally, we investigated whether movement cues during systole or diastole enhance muscle activity. To test these hypotheses, 29 participants were instructed to perform or imagine thumb abductions, while we recorded their electroencephalography, electrocardiogram, and electromyogram (EMG) activity. We show that imaginary movements instructed during diastole lead to more pronounced suppression of alpha and beta activity in contralateral sensorimotor cortices, with no significant cardiac timing effects observed during ME as confirmed by circular statistics. Additionally, diastole was associated with significantly increased EMG on the side of actual and, to a lesser degree, imagined movements. Our study identifies optimal cardiac phases for MI performance, suggesting potential pathways to enhance MI-based assistive technologies.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-11-05DOI: 10.1093/cercor/bhae436
Yanjie Peng, DanTong Wu, Mingyuan Tian, Yanyin Zhou, Xiaohong Peng, Zhenlei Peng, Ke Gong, Kezhi Liu, Jing Chen, Wei Lei
{"title":"Neurophysiological characteristics of reward processing in individuals at different levels of gaming.","authors":"Yanjie Peng, DanTong Wu, Mingyuan Tian, Yanyin Zhou, Xiaohong Peng, Zhenlei Peng, Ke Gong, Kezhi Liu, Jing Chen, Wei Lei","doi":"10.1093/cercor/bhae436","DOIUrl":"https://doi.org/10.1093/cercor/bhae436","url":null,"abstract":"<p><p>Altered reward processing has been repeatedly reported in Internet gaming disorder (IGD). However, it remains unclear whether these changes are linked to the severity of addictive symptoms or the extent of gaming experience. This study examined the neurophysiological responses regarding reward anticipation and consummation in individuals at different levels of gaming (including 22 casual gamers, 31 regular gamers, and 27 individuals with IGD) through a monetary incentive delay task. Three event-related potential components during reward anticipation-cue-related P300 (Cue-P3), contingent negative variation, and stimulus-preceding negativity (SPN)-and two during reward consummation-feedback-related negativity and feedback-related P300 (FB-P3)-were measured. We found that IGD individuals exhibited greater Cue-P3 but lower SPN amplitude compared to casual gamers, while regular gamers fell between the two without significant differences. Regressions indicated that more extensive gaming experience, rather than the severity of the symptoms, primarily contributed to the increased Cue-P3 in IGD. No group differences were found during reward consummation. Our results highlight disrupted reward anticipation processing in IGD, characterized by increased attention bias toward reward cues (Cue-P3) but diminished cognitive resources for reward anticipation (SPN) and emphasize the role of gaming experience in increased attention bias in IGD.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}