Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhaf017
César Frederico Dos Santos
{"title":"Conceptual obstacles to the existence of an innate sense of number in the brain.","authors":"César Frederico Dos Santos","doi":"10.1093/cercor/bhaf017","DOIUrl":"https://doi.org/10.1093/cercor/bhaf017","url":null,"abstract":"<p><p>I contend that the paper by Lorenzi et al. (2025) fails to establish the existence of an innate sense of number in the brain, as it conflates the terms \"number\" and \"numerosity.\" While \"numerosity\" refers to the magnitude, \"number\" refers to the scale used by numerate humans to measure this magnitude. Since they do not provide evidence that the numerical scale is innately present in the brain, the behavioral and neural findings they present, at best, support the existence of a cerebral mechanism sensitive to numerosities.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhaf008
Fransiscus Adrian Agahari, Christian Stricker
{"title":"Modulation by serotonin reveals preferred recurrent excitatory connectivity in layer II of rat neocortex.","authors":"Fransiscus Adrian Agahari, Christian Stricker","doi":"10.1093/cercor/bhaf008","DOIUrl":"https://doi.org/10.1093/cercor/bhaf008","url":null,"abstract":"<p><p>We reported that in layer II pyramidal cells of rat somatosensory cortex, 10 μM serotonin (5-HT) alters miniature excitatory postsynaptic current frequency in a subset of cells (47%, \"responders\", RC; \"non-responders\", NC otherwise) via 5-HT2 receptors (5-HT2R) but in all pairs reduced evoked excitatory postsynaptic current amplitude by ~50% (Agahari FA, Stricker C. 2021. Serotonergic modulation of spontaneous and evoked transmitter release in layer II pyramidal cells of rat somatosensory cortex. Cereb Cortex. 31:1182-1200. https://doi.org/10.1093/cercor/bhaa285.) suggestive of preferential connectivity. We provide different lines of evidence that distinguish these subsets. First, after 5-HT exposure, changes in miniature excitatory postsynaptic current, spontaneous EPSC frequency, or whole-cell noise (σw) were restricted to postsynaptic cells in pairs (PO) and RC but absent in presynaptic (PR) and NC. Second, exposure caused a large change in holding current with a small variability in NC, but a small one with a large variability in PO/RC. In addition, ΔRin in PO/RC was larger than in PR/NC, with a negative correlation between ΔIhold and ΔRin in NC, a positive in PO, but none in RC. Third, an unbiased classifier identified most PO as RC and all PR as NC. Our data establish two distinct sets of pyramidal cells having a preferred connectivity from NC → RC. 5-HT2R-mediated modulation of transmitter release may likely reduce the signal-to-noise ratio in the ipsilateral but leave the output to the contralateral side unaffected.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhae494
Can Yang, Xianhui He, Ying Cai
{"title":"Reactivating and reorganizing activity-silent working memory: two distinct mechanisms underlying pinging the brain.","authors":"Can Yang, Xianhui He, Ying Cai","doi":"10.1093/cercor/bhae494","DOIUrl":"10.1093/cercor/bhae494","url":null,"abstract":"<p><p>Recent studies have proposed that visual information in working memory (WM) can be maintained in an activity-silent state and reactivated by task-irrelevant high-contrast visual impulses (\"ping\"). Although pinging the brain has become a popular tool for exploring activity-silent WM, its underlying mechanisms remain unclear. In the current study, we directly compared the neural reactivation effects and behavioral consequences of spatial-nonmatching and spatial-matching pings to distinguish the noise-reduction and target-interaction hypotheses of pinging the brain. Initially, in an electroencephalogram study, our neural decoding results showed that spatial-nonmatching pings reactivated activity-silent WM transiently without changing the original WM representations or recall performance. Conversely, spatial-matching pings reactivated activity-silent WM more durably and further reorganized WM information by decreasing neural representations' dynamics. Notably, only the reactivation strength of spatial-matching pings correlated with recall performance and was modulated by the location of memorized items, with neural reactivation occurring only when both items and pings were presented horizontally. Consistently, in a follow-up behavioral study, we found that only spatial-matching, horizontal pings impaired recall performance compared to no ping. Together, our results demonstrated two distinct mechanisms underlying pinging the brain, highlighting the critical role of the ping's context (i.e. spatial information) in reactivating and reorganizing activity-silent WM.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhae490
Linan Liu, Yingxin Liu, Yongfeng Sun, Xian Lu, Yong Ji, Xiujuan Zhao, Jun Li, Chuncheng Liu
{"title":"The changes in the ratio of Dicer1 transcripts can participate in the neuronal hypoxic response by regulating miR-29b.","authors":"Linan Liu, Yingxin Liu, Yongfeng Sun, Xian Lu, Yong Ji, Xiujuan Zhao, Jun Li, Chuncheng Liu","doi":"10.1093/cercor/bhae490","DOIUrl":"10.1093/cercor/bhae490","url":null,"abstract":"<p><p>The nervous system is highly dependent on the supply of oxygen and nutrients, so when demand for oxygen exceeds its supply, hypoxia is induced. The hippocampus is very important in the nervous system. It has the ability to control human behavior, memory, emotion, and so on. Therefore, when the hippocampus is damaged by hypoxia, it may cause nervous system diseases such as Alzheimer's disease, Parkinson's disease, and stroke. Alternative splicing plays an important regulatory role in the processes of growth and disease occurrence and development. However, the function of hypoxia-induced alternative splicing in neurological diseases needs to be further studied. Therefore, we performed hypoxia stress on mouse hippocampal neuron HT22 cells and then analyzed differentially expressed genes and differential alternative splicing events by next-generation sequencing. Through bioinformatics analysis and verification, it was found that hypoxia stress regulated the expression of Rbm15 and the ratio of Dicer1 transcripts in HT22 cells. The change in the ratio of Dicer1 transcripts may be related to the upregulation of miR-29b under hypoxia stress. This study can provide multiple time point sequencing results and a theoretical basis for the study of hypoxia-related gene alternative splicing.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhae503
Yao Yin, Ti Su, Xueke Wang, Bowen Hu, Rong Zhang, Feng Zhou, Tingyong Feng
{"title":"Exploring common and distinct neural basis of procrastination and impulsivity through elastic net regression.","authors":"Yao Yin, Ti Su, Xueke Wang, Bowen Hu, Rong Zhang, Feng Zhou, Tingyong Feng","doi":"10.1093/cercor/bhae503","DOIUrl":"10.1093/cercor/bhae503","url":null,"abstract":"<p><p>Prior work highlighted that procrastination and impulsivity shared a common neuroanatomical basis in the dorsolateral prefrontal cortex, implying a tight relationship between these traits. However, theorists hold that procrastination is motivated by avoiding aversiveness, while impulsivity is driven by approaching immediate pleasure. Hence, exploring the common and distinct neural basis underlying procrastination and impulsivity through functional neuroimaging becomes imperative. To address this, we employed elastic net regression to examine the links between whole-brain resting-state functional connectivity and these traits in 822 university students from China. Results showed that the functional connections between the default network and the visual network were positively associated with both traits, indicating that the dysfunction of higher-order cognition (eg self-control) may account for their tight relationship. A distinct neural basis was also identified: Procrastination was negatively associated with functional connections between the frontal-parietal network and the ventral-attention network and between the cingular-opercular network and the subcortical network. In contrast, connections between the default network and the somato-motor network were negatively associated with impulsivity. These findings suggest that procrastination may be rooted in emotion-regulation deficits, while impulsivity may be rooted in reward-processing deficits. This deeper understanding of their neural basis provides insights for developing targeted interventions.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhae468
Zuozhen Cao, Zhiyong Zhao, Qinfeng Zhu, Yao Shen, Yiqi Shen, Mingyang Li, Dan Wu
{"title":"Developmental changes in connectivity-based parcellation in typical cortical areas during early life.","authors":"Zuozhen Cao, Zhiyong Zhao, Qinfeng Zhu, Yao Shen, Yiqi Shen, Mingyang Li, Dan Wu","doi":"10.1093/cercor/bhae468","DOIUrl":"https://doi.org/10.1093/cercor/bhae468","url":null,"abstract":"<p><p>The human brain undergoes profound developmental changes in the cortex during early life. Functional parcellation of the cortex may also be altered, but there was a limited methodology for quantification. Here, we employed connectivity-based parcellation of sub-regions as a marker to characterize the heterogeneous development of the cerebral cortex. Particularly, we investigated the parcellation of primary motor (M1), sensory cortex (S1), and insula based on tractography-based connectivity among 3 stages during first 2 yr of life and also adulthood. We identified 4 and 3 sub-regions along superior-to-inferior axis in M1 and S1, respectively, and 2 sub-regions along anterior-to-posterior axis in insula. Connectivity profiles and volume fractions of different sub-regions showed distinct development changes. Specifically, measures of each sub-region in M1 and S1 showed a steady development during first 2 yr of life and gradually became similar to adulthood patterns. In contrast, sub-regions in insula exhibited nearly no change in this stage but tremendous differences in adult group. These findings may suggest primary cortices may experience early development in early life, while the high-order cortex may change at a later stage. These findings provided insights into the heterogeneous development during early life and indicated the necessity of using an age-specific cortical parcellation in studying baby brains.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhaf019
Andreas Nieder
{"title":"Neuronal mechanisms enhancing selectivity of the innate number sense via learning.","authors":"Andreas Nieder","doi":"10.1093/cercor/bhaf019","DOIUrl":"https://doi.org/10.1093/cercor/bhaf019","url":null,"abstract":"<p><p>In their feature article, Lorenzi et al. (2025) compiled extensive biological evidence on the ontogenetic origins of the number sense. Drawing on both behavioral and neurobiological data, they convincingly argue that the \"number sense\" is fundamentally innate and present from birth in numerically competent animals, including humans. At the same time, the authors acknowledge the role of learning and experience in shaping numerical cognition. This commentary builds on the idea of learning-induced changes to the number sense, extending the concept of an innate number sense to one that is modifiable through learning and experience. It summarizes evidence from single-neuron recordings and proposes neurophysiological mechanisms underlying these learning-induced changes in numerical cognition.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differential neurogenic patterns underlie the formation of primary and secondary areas in the developing somatosensory cortex.","authors":"Naoto Ohte, Takayuki Kimura, Rintaro Sekine, Shoko Yoshizawa, Yuta Furusho, Daisuke Sato, Chihiro Nishiyama, Carina Hanashima","doi":"10.1093/cercor/bhae491","DOIUrl":"10.1093/cercor/bhae491","url":null,"abstract":"<p><p>The cerebral cortex consists of hierarchically organized areas interconnected by reciprocal axonal projections. However, the coordination of neurogenesis to optimize neuronal production and wiring between distinct cortical areas remains largely unexplored. The somatosensory cortex plays a crucial role in processing tactile information, with inputs from peripheral sensory receptors relayed through the thalamus to the primary and secondary somatosensory areas. To investigate the dynamics of neurogenesis in cortical circuit formation, we employed temporal genetic fate mapping of glutamatergic neuron cohorts across the somatosensory cortices. Our analysis revealed that neuronal production in the secondary somatosensory cortex (S2) precedes that of the primary somatosensory cortex (S1) from the deep-layer neuron production period and terminates earlier. We further revealed a progressive decline in upper-layer neuron output in S2, attributed to the attenuation of the apical ventricular surface, resulting in a reduced number of upper-layer neurons within S2. These findings support the existence of a protomap mechanism governing the area-specific assembly of primary and secondary areas in the developing neocortex.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of patterns and associations of neuroinflammation in cognitive impairment.","authors":"Ruoqiu Gan, Hongsheng Xie, Ziru Zhao, Xiaoai Wu, Ruihan Wang, Baolin Wu, Qin Chen, Zhiyun Jia","doi":"10.1093/cercor/bhaf013","DOIUrl":"https://doi.org/10.1093/cercor/bhaf013","url":null,"abstract":"<p><p>Neuroinflammation has been identified as an important pathological component of cognitive impairment, and translocator protein imaging has become a valuable tool for assessing its patterns. We aimed to obtain the exact distribution of neuroinflammation in cognitive impairment and its underlying mechanisms with amyloid-beta. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, two investigators searched literature databases for studies that measured translocator protein binding levels. This measurement was performed between healthy controls and subjects with mild cognitive impairment or Alzheimer's disease via voxel-based positron emission tomography image analysis at the whole-brain level. This meta-analysis was performed with the anisotropic effect-size based algorithm. Neuroinflammation in patients with mild cognitive impairment was mainly concentrated in the left middle temporal gyrus and left amygdala. In Alzheimer's disease patients, the brain regions involved were the left inferior temporal gyrus, left calcarine fissure/surrounding cortex, left parahippocampal gyrus, right lingual gyrus, and right middle temporal gyrus. In addition, neuroinflammation in patients with cognitive impairment was highly correlated with amyloid-beta deposition in the cortex. This study deepens our understanding of the patterns of neuroinflammation in patients with cognitive impairment and its interaction with amyloid-beta, providing potential insights for therapeutic approaches targeting neuroinflammation in Alzheimer's disease.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhaf021
Scarlett R Howard
{"title":"The origins of number sense: a commentary on \"Is there an innate sense of number in the brain?\"","authors":"Scarlett R Howard","doi":"10.1093/cercor/bhaf021","DOIUrl":"https://doi.org/10.1093/cercor/bhaf021","url":null,"abstract":"<p><p>The question of whether a \"sense of number\" is innate has been posed in a new article by Lorenzi et al. (2025). The article explores the behavioral and neurobiological evidence from newborn animals to delve into the evolutionary origins of a sense of number. Lorenzi et al.(2025) raises new questions, interpretations, and ideas for future work to understand how number sense has evolved in humans and nonhuman animals. In this commentary, I discuss the arguments for an innate number sense, evaluate the implications for numerical cognition, and suggest how future work could fill the current gaps in our knowledge.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}