{"title":"Advances in Aerosol Formulation for Targeted Delivery of Therapeutic Agents from Nose to Brain.","authors":"Shristy Verma, Pramod Kumar Sharma, Rishabha Malviya","doi":"10.2174/0115672018285350240227073607","DOIUrl":"https://doi.org/10.2174/0115672018285350240227073607","url":null,"abstract":"<p><p>The intricate anatomical and physiological barriers that prohibit pharmaceuticals from entering the brain continue to provide a noteworthy hurdle to the efficient distribution of medications to brain tissues. These barriers prevent the movement of active therapeutic agents into the brain. The present manuscript aims to describe the various aspects of brain-targeted drug delivery through the nasal route. The primary transport mechanism for drug absorption from the nose to the brain is the paracellular/extracellular mechanism, which allows for rapid drug transfer. The transcellular/intracellular pathway involves the transfer across a lipoidal channel, which regulates the entry or exit of anions, organic cations, and peptides. Spectroscopy and PET (positron emission tomography) are two common methods used for assessing drug distribution. MRI (Magnetic resonance imaging) is another imaging method used to assess the efficacy of aerosol drug delivery from nose to brain. It can identify emphysema, drug-induced harm, mucus discharge, oedema, and vascular remodeling. The olfactory epithelium's position in the nasal cavity makes it difficult for drugs to reach the desired target. Bi-directional aerosol systems and tools like the \"OptiNose\" can help decrease extranasal particle deposition and increase particle deposition efficiency in the primary nasal pathway. Direct medicine administration from N-T-B, however, can reduce the dose administered and make it easier to attain an effective concentration at the site of activity, and it has the potential to be commercialized.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of Phytosomes and Ethosomes: Groundbreaking Approaches for Delivering the Phytochemical Components of Plants.","authors":"Asha Raghav, Meenakshi Attri, Hema Chaudhary","doi":"10.2174/0115672018282264240218034853","DOIUrl":"https://doi.org/10.2174/0115672018282264240218034853","url":null,"abstract":"<p><p>Phytoconstituents have been widely used since ancient times to form a complex with phospholipids due to their various therapeutic actions. Despite having strong pharmacodynamic efficiency, numerous phytoconstituents have shown lower in vivo bioavailability and few adverse effects. Phytochemicals soluble in water exhibit poor absorption, leading to a limited therapeutic impact. Phytosome nanotechnology overcomes this limitation by creating a bound of phytochemicals with phospholipids. This method exhibits improved absorption because phytosomes inhibit significant herbal extract components from being degraded by gastric juices and gut flora. This improves bioavailability, increases clinical benefit, and ensures delivery to tissues without compromising nutritional stability. This review also aims to highlight those vesicular systems that could be used in phytosome technology. Additionally, this review highlights the preparation, advantage, characterization, applications, and recent development of phytosome and ethosome with a list of recent patents and marketed formulations and their uses.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengqi Yi, Yangxin Lin, Yuyang Li, Bei Xiong, Yunhan Huang, Wei Guo, Bo Lu
{"title":"An Enzyme-responsive Porphyrin Metal-organic Framework Nanosystem for Targeted and Enhanced Synergistic Cancer Photo-chemo Therapy.","authors":"Mengqi Yi, Yangxin Lin, Yuyang Li, Bei Xiong, Yunhan Huang, Wei Guo, Bo Lu","doi":"10.2174/0115672018286563240223072702","DOIUrl":"https://doi.org/10.2174/0115672018286563240223072702","url":null,"abstract":"<p><strong>Background: </strong>The clinical efficiency of photodynamic therapy (PDT) in combination with chemotherapy has proven to be a promising strategy for tumor treatment, yet is restricted by the high glutathione (GSH) concentration at the tumor site and nonspecific drug targeting.</p><p><strong>Objective: </strong>The goal of the current research was to create a biocompatible GSH-depleting and tumor- targeting nanoparticle (denoted as DOX/CA@PCN-224@HA) for the combined photodynamic and chemo photo-chemo) therapy.</p><p><strong>Methods: </strong>The nanoparticles were characterized by transmission electron microscopy (TEM). A UV-vis spectrophotometer was used to measure the drug loading efficiency (DE) and encapsulation efficiency (EE). The GSH-depleting ability was measured using Ellman's test. Confocal laser scan microscopy (CLSM) was used to assess the cellular uptake. MTT was adopted to evaluate the cytotoxicity of DOX/CA@PCN-224@HA against 4T1 cells.</p><p><strong>Results: </strong>The altered PCN-224 showed excellent monodispersing with a dimension of approximately 193 nm ± 2 nm in length and 79 nm ± 3 nm in width. The larger and spindle grid-like structure of PCN-224 obtains better dual-drug loading ability (DOX: 20.58% ± 2.60%, CA: 21.81% ± 1.98%) compared with other spherical PCN-224 nanoparticles. The ultimate cumulative drug release rates with hyaluronidase (HAase) were 74% ± 1% (DOX) and 45% ± 2% (CA) after 72 h. DOX/CA@PCN-224@HA showed GSH-consuming capability, which could improve the PDT effect. The drug-loaded nanoparticles could accurately target 4T1 cells through biological evaluations. Moreover, the released DOX and CA display cooperative effects on 4T1 cells in vitro. DOX/CA@PCN-224@HA nanoparticles showed inhibition against 4T1 cells with an IC50 value of 2.71 μg mL-1.</p><p><strong>Conclusion: </strong>This nanosystem displays great potential for tumor-targeted enhanced (photo-chemo) therapy.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current Progress and Emerging Role of Essential Oils in Drug Delivery Therapeutics.","authors":"Rokeya Sultana, Sourav Mohanto, Adrija Bhunia, Aritra Biswas, Mohammad Shabib Akhtar, Vijay Mishra, Dimple Modi, Alaa Aa Aljabali, Murtaza Tambuwala, Md Faiyazuddin","doi":"10.2174/0115672018287719240214075810","DOIUrl":"https://doi.org/10.2174/0115672018287719240214075810","url":null,"abstract":"<p><p>The utilization of novel drug delivery systems loaded with essential oils has gained significant attention as a promising approach for biomedical applications in recent years. Plants possess essential oils that exhibit various medicinal properties, i.e., anti-oxidant, anti-microbial, anti- inflammatory, anti-cancer, immunomodulatory, etc., due to the presence of various phytoconstituents, including terpenes, phenols, aldehydes, ketones, alcohols, and esters. An understanding of conventional and advanced extraction techniques of Essential Oils (EOs) from several plant sources is further required before considering or loading EOs into drug delivery systems. Therefore, this article summarizes the various extraction techniques of EOs and their existing limitations. The in-built biological applications of EOs are of prerequisite importance for treating several diseases. Thus, the mechanisms of action of EOs for anti-inflammatory, anti-oxidant, anti-bacterial activities, etc., have been further explored in this article. The encapsulation of essential oils in micro or nanometric systems is an intriguing technique to render adequate stability to the thermosensitive compounds and shield them against environmental factors that might cause chemical degradation. Thus, the article further summarizes the advanced drug delivery approaches loaded with EOs and current challenges in the future outlook of EOs for biomedical applications.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139975338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deeksha Manchanda, Manish Makhija, Parijat Pandey, Manu Sharma
{"title":"Transfersomes: Recent Advances, Mechanisms, Exhaustive Applications, Clinical Trials, and Patents","authors":"Deeksha Manchanda, Manish Makhija, Parijat Pandey, Manu Sharma","doi":"10.2174/0115672018295038240209055444","DOIUrl":"10.2174/0115672018295038240209055444","url":null,"abstract":"<p><p>A feasible nano transdermal delivery system generally intends to have specific ideal and distinct characteristics primarily for safety, clinical efficacy, and boosted therapeutic index. The delivery of drugs, particularly macromolecules, across the skin is one of the most strenuous obstacles in front of pharmaceutical scientists. Technology advancement has provided some opportunities to overcome this difficulty by utilising microneedle arrays, ablation, laser methods etc. However, associated uneasiness, painful sensation, and higher cost of therapies limit their day-to-day use. Therefore, researchers have focused on developing alternate carriers like ultra-deformable liposomes, also termed transfersomes. Transfersomes are composed of a lipid bilayer containing phospholipids and an edge activator to facilitate drug delivery via transdermal route to deeper layers of skin and for higher systemic bioavailability. The bilayer structure of transfersomes allows ease of encapsulation of both hydrophilic and lipophilic drugs with higher permeability than typical liposomes. Therefore, among various vesicular systems, transfersomes have developed much interest in targeted and sustained drug delivery. The current review primarily emphasizes critical aspects of transfersomes, including their applications, clinical trial studies, and patents found in various literature sources.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139935127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara Ahmed, Mai Mansour, Rania A H Ishak, Nahed D Mortada
{"title":"WITHDRAWN: Resveratrol-based Delivery Systems as Contemporary Nominees for Combating Pulmonary Diseases: A Comprehensive Review","authors":"Sara Ahmed, Mai Mansour, Rania A H Ishak, Nahed D Mortada","doi":"10.2174/0115672018265986240209064358","DOIUrl":"10.2174/0115672018265986240209064358","url":null,"abstract":"<p><p>Since the authors are not responding to the editor’s requests to fulfill the editorial requirement, therefore, the article has been withdrawn of the journal \"Current Drug Delivery\".</p><p><p>Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.</p><p><p>The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php</p><p><strong>Bentham science disclaimer: </strong>It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Designing, Optimising, and Assessing a Novel Emulgel Containing Minoxidil for Controlled Drug Release, Incorporating Marine-based Polymers.","authors":"Flowerlet Mathew, A Mary Saral","doi":"10.2174/0115672018271502231226113423","DOIUrl":"https://doi.org/10.2174/0115672018271502231226113423","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop an emulgel containing minoxidil as a drug for hair growth promotion in diseases, such as androgenetic alopecia, using gelling agents, such as chitosan and fucoidan.</p><p><strong>Methods: </strong>In this study, gelling agents were selected for the emulgel formulation. By various evaluation tests and through optimization, the chitosan-fucoidan combination was selected as the gelling agent for the preparation of emulgel using various evaluation parameters.</p><p><strong>Results: </strong>X2, the best emulgel formulation, contained 2.54 % chitosan and 0.896 % fucoidan. Chitosan prolonged the duration of drug release, and controlled release was obtained. Fucoidan increased the gelling activity, water absorption rate, and stability of the formulation. In this study, the X2 formulation showed the highest percentage of drug release at the 12th hour. It was found to be 99.7%, which followed the zero-order release model.</p><p><strong>Conclusion: </strong>Owing to the wide range of biological activities of fucoidan, the loaded active substance can be protected, and at the same time, its potency can be improved, resulting in effective treatment. Because fucoidan has diverse properties and potential, it will be widely used in the biomedical and pharmaceutical industries in the future.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139743092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soumya Ranjan Satapathy, Rudra Narayan Sahoo, Amit Kumar Nayak
{"title":"Influence of Nano-Particulate Impurities and β-glucans on the Stability of Protein-Based Formulations.","authors":"Soumya Ranjan Satapathy, Rudra Narayan Sahoo, Amit Kumar Nayak","doi":"10.2174/0115672018290111240119115306","DOIUrl":"https://doi.org/10.2174/0115672018290111240119115306","url":null,"abstract":"<p><p>Pharmaceutical grade sugars manufactured under Current Good Manufacturing Practice (cGMP) and complied with International Pharmaceutical Excipients Council (IPEC) quality standards, also contain a significant amount of nano-particulate impurities (NPIs). This review will focus on the origin of NPIs, the mechanism of their interference with Dynamic light scattering (DLS) and endotoxin tests, filtration technology to effectively reduce the NPIs, methodologies for analytical quantification of NPIs, guidance for setting the limits of threshold concentration and the overall impact of NPIs on the therapeutic activity, performance, stability of biopharmaceuticals and protein-based formulations. NPIs with an average particle size of 100 to 200 nm are present in sugars and are a combination of various chemicals such as dextrans (with the presence of β-glucans), ash, inorganic metal salts, aromatic colorants, etc. These NPIs primarily originate from raw materials and cannot be removed during the sugar refinement process. While it is commonly believed that filtering the final formulation with a 0.22 μ sterilizing grade filter removes all microbes and particles, it is important to note that NPIs cannot be filtered using this standard sterile filtration technology. Exceeding the threshold limit of NPIs can have detrimental effects on formulations containing proteins, monoclonal Antibodies (mAbs), nucleic acids, and other biopharmaceuticals. NPIs and β-glucans have a critical impact on the functionality and therapeutic activity of biomolecules and if present below the threshold limit of reaction, stability and shelf-life of biologics formulation will be greatly improved and the risk of immunogenic reactions must be significantly decreased.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging Phytochemical Formulations for Management of Rheumatoid Arthritis: A Review.","authors":"Prachi Pimple, Jenny Shah, Prabha Singh","doi":"10.2174/0115672018270434240105110330","DOIUrl":"https://doi.org/10.2174/0115672018270434240105110330","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a T-cell-mediated chronic inflammatory disorder affecting 0.5-1% of the global population. The disease with unknown etiology causes slow destruction of joints, advancing to significant deterioration of an individual's quality of life. The present treatment strategy comprises the use of disease-modifying anti-rheumatic drugs (DMARDs) coupled with or without nonsteroidal anti-inflammatory drugs or glucocorticoids. Additionally, involves co-therapy of injectable biological DMARDs in case of persistent or recurrent arthritis. The availability of biological DMARDs and the implementation of the treat-to-target approach have significantly improved the outcomes for patients suffering from RA. Nevertheless, RA requires continuous attention due to inadequate response of patients, development of tolerance and severe side effects associated with long-term use of available treatment regimens. An estimated 60-90% of patients use alternative methods of treatment, such as herbal therapies, for the management of RA symptoms. Over the past few decades, researchers have exploring natural phytochemicals to alleviate RA and associated symptoms. Enormous plant-origin phytochemicals such as alkaloids, flavonoids, steroids, terpenoids and polyphenols have shown anti-inflammatory and immunomodulatory activity against RA. However, phytochemicals have certain limitations, such as high molecular weight, poor water solubility, poor permeability, poor stability and extensive first-pass metabolism, limiting absorption and bioavailability. The use of nanotechnology has aided to extensively improve the pharmacokinetic profile and stability of encapsulated drugs. The current review provides detailed information on the therapeutic potential of phytochemicals. Furthermore, the review focuses on developed phytochemical formulations for RA, with emphasis on clinical trials, regulatory aspects, present challenges, and future prospects.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intelligent Drug Delivery: Pioneering Stimuli-Responsive Systems to Revolutionize Disease Management- An In-depth Exploration.","authors":"Badarinadh Kallepalli, Unnati Garg, Neha Jain, Rohan Nagpal, Sakshi Malhotra, Triveni Tiwari, Shreya Kaul, Upendra Nagaich","doi":"10.2174/0115672018278641231221051359","DOIUrl":"https://doi.org/10.2174/0115672018278641231221051359","url":null,"abstract":"<p><p>In recent years, there has been an escalating interest in stimuli-responsive drug delivery systems (SRDDS) due to their ability to revolutionize the delivery of therapeutics. SRDDSs offer a multitude of benefits in comparison to conventional drug delivery systems (DDS), including spatiotemporal control of drug release, targeted delivery, and improved therapeutic efficacy. The development of various classes of stimuli-responsive DDS, such as pH-responsive, temperature-responsive, photo-responsive, redox responsive systems, has been propelled by advances in materials science, nanotechnology, and biotechnology. These systems exploit specific environmental or physiological cues to trigger drug release in a precisely controlled manner, making them highly promising for the treatment of various diseases. In this review article, an in-depth exploration of the principles, mechanisms, and applications of SRDDS in the context of diverse pathologies such as cancer, arthritis, Alzheimer's disease, atherosclerosis and tissue engineering has been provided. Furthermore, this article delves into the discussion of recent patents, market overview and the progress of research in clinical trials. Overall, this article underscores the transformative potential of SRDDS in enabling personalized, precise, and effective drug delivery for the treatment of the above-mentioned diseases.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139682291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}