Current drug delivery最新文献

筛选
英文 中文
Natural Hydrogel-based Drug Delivery System: A Global Scenario, Current Development, and Future Prospective. 天然水凝胶给药系统:全球情况、目前发展和未来展望。
Current drug delivery Pub Date : 2025-01-07 DOI: 10.2174/0115672018320746241101052039
Momin Firdose Abdul Shukur, Shivani Makhijani, Rahul Ingle, Maria Saifee
{"title":"Natural Hydrogel-based Drug Delivery System: A Global Scenario, Current Development, and Future Prospective.","authors":"Momin Firdose Abdul Shukur, Shivani Makhijani, Rahul Ingle, Maria Saifee","doi":"10.2174/0115672018320746241101052039","DOIUrl":"https://doi.org/10.2174/0115672018320746241101052039","url":null,"abstract":"<p><p>Pharmaceutical giants (e.g., Ashland, Bausch & Lomb, Johnson & Johnson, Medtronic, Neurelis, etc.) promote the growth of hydrogels globally. Hydrogel-based drug delivery system (DDS) market size accounted for USD 6415 million in 2021 and is estimated to reach USD 12,357 million by 2030, with a compound annual growth rate (CAGR) of 7.6% from 2022 to 2030. Hydrogels, characterized by their unique three-dimensional networks of hydrophilic polymers, have emerged as a keystone in the advancement of biomaterial science. Existing trends in the advancement of hydrogel drug delivery systems (DDS) involve the release of drugs in response to specific triggers such as pH, temperature, or enzymes for targeted drug delivery and to reduce the potential for systemic toxicity. They excel in their ability to achieve high drug loading capacities, their ease of manufacturing, and their inherent biocompatibility and biodegradability. These attributes not only promise crucial mechanistic features but also offer robust protection for labile drugs and enable the encapsulation of multiple therapeutic agents. Thus, hydrogels stand as promising candidates in various biomedical and pharmaceutical applications, ensuring controlled release and compatibility essential for therapeutic efficacy. Additionally, hydrogels have massive applications in tissue engineering, wound healing, cosmetics, and biomaterials (e.g., contact lenses and implantable devices). Furthermore, hydrogels possess the capability to release active drug(s) under sustained conditions as recommended. Their exceptional qualities position hydrogels as a preferred choice on a global scale. Moreover, they enhance bioavailability, optimize dosage regimens, promote patient compliance, and minimize adverse effects. Furthermore, hydrogels are recommended for use in clinical trials to enhance therapeutic drug delivery outcomes. Despite their remarkable properties, hydrogels do have certain disadvantages, including expensive manufacturing costs and incompatibility with certain drugs. The author has highlighted the fundamental ideas about hydrogels, their classification, global scenario, current developments in the field, and their potential applications. Overall, hydrogel application is progressing rapidly, toward more proficient and effective DDS in the future.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pH-sensitive Silk Fibroin Nanoparticles Encapsulating Β-Hydroxyisovalerylshikonin for Targeted Pancreatic Cancer Therapy. ph敏感丝素纳米颗粒包裹Β-Hydroxyisovalerylshikonin用于靶向胰腺癌治疗。
Current drug delivery Pub Date : 2025-01-07 DOI: 10.2174/0115672018342718241030070142
Haifeng Zhang, Qiuhui Wang, Shangdong Wang, Ruiyao Zhou, Jianwu Cai, Xiao Hu
{"title":"pH-sensitive Silk Fibroin Nanoparticles Encapsulating Β-Hydroxyisovalerylshikonin for Targeted Pancreatic Cancer Therapy.","authors":"Haifeng Zhang, Qiuhui Wang, Shangdong Wang, Ruiyao Zhou, Jianwu Cai, Xiao Hu","doi":"10.2174/0115672018342718241030070142","DOIUrl":"https://doi.org/10.2174/0115672018342718241030070142","url":null,"abstract":"<p><strong>Background: </strong>Pancreatic cancer is a highly malignant tumor with a poor prognosis, and current treatment methods have limited effectiveness. Therefore, developing new and more effective therapeutic strategies is crucial. This study aims to establish pH-responsive silk fibroin (SF) nanoparticles encapsulating β-hydroxyisovalerylshikonin (SF@β-HIVS) to enhance the therapeutic effects against pancreatic cancer.</p><p><strong>Methods: </strong>SF@β-HIVS nanoparticles were prepared using a self-assembly technique and characterized under different pH conditions using scanning electron microscopy (SEM) and dynamic light scattering (DLS). The effects of SF@β-HIVS on the viability, apoptosis, and migration of PANC-1 cells were assessed through in vitro experiments. Additionally, in vivo experiments using a PANC-1 xenograft mouse model evaluated the antitumor activity and biosafety of SF@β-HIVS.</p><p><strong>Results: </strong>SF@β-HIVS nanoparticles exhibited a uniformly distributed spherical structure under pH 7.4 conditions and rapidly disintegrated in acidic environments, releasing the drug. In vitro experiments demonstrated that SF@β-HIVS significantly inhibited PANC-1 cell proliferation, induced apoptosis, and suppressed cell migration. In vivo, experiments confirmed the significant antitumor activity and good biosafety of SF@β-HIVS.</p><p><strong>Conclusion: </strong>This study successfully developed pH-responsive SF@β-HIVS nanoparticles and validated their potential in treating pancreatic cancer. These findings provided a foundation for the clinical application of SF@β-HIVS in pancreatic cancer treatment.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DSPE-mPEG2000-Modified Podophyllotoxin Long-Circulating Liposomes for Targeted Delivery: Their Preparation, Characterization, and Evaluation. dspe - mpeg2000修饰的靶向递送鬼臼毒素长循环脂质体:制备、表征和评价。
Current drug delivery Pub Date : 2025-01-02 DOI: 10.2174/0115672018356666241224052638
Langlang Zhang, Rongyu Li, Han Zhang, Xubin Suo, Bohong Guo
{"title":"DSPE-mPEG2000-Modified Podophyllotoxin Long-Circulating Liposomes for Targeted Delivery: Their Preparation, Characterization, and Evaluation.","authors":"Langlang Zhang, Rongyu Li, Han Zhang, Xubin Suo, Bohong Guo","doi":"10.2174/0115672018356666241224052638","DOIUrl":"https://doi.org/10.2174/0115672018356666241224052638","url":null,"abstract":"<p><strong>Objective: </strong>DSPE-mPEG2000 is a phospholipid and polyethylene glycol conjugate used in various biomedical applications, including drug delivery, gene transfection, and vaccine delivery. Due to the hydrophilic and hydrophobic properties of DSPE-mPEG2000, it can serve as a drug carrier, encapsulating drugs in liposomes to enhance stability and efficacy.</p><p><strong>Method: </strong>In this study, long-circulating podophyllotoxin liposomes (Lc-PTOX-Lps) were prepared using DSPE-mPEG2000 as a modifying material and evaluated for their pharmacokinetics and anticancer activity.</p><p><strong>Result: </strong>Lc-PTOX-Lps had an encapsulation rate of 87.11±1.77%, an average particle size of 168.91±7.07 nm, a polydispersity index (PDI) of 0.19±0.04, and a zeta potential of -24.37±0.36 mV. In vitro release studies showed that Lc-PTOX-Lps exhibited a significant slow-release effect. The long-circulating liposomes demonstrated better stability compared to normal liposomes and exhibited a significant slow-release profile. Pharmacokinetic studies indicated that Lc-PTOX-Lps had a prolonged half-life, reduced in vivo clearance, and improved bioavailability. Additionally, Lc-PTOX-Lps exhibited better anticancer effects on MCF-7 cells and lower toxicity to normal cells compared to PTOX.</p><p><strong>Conclusion: </strong>Lc-PTOX-Lps were synthesized using a simple and effective method, and Lc-PTOXLps are promising anticancer agents.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conjugated Linoleic Acid in Cancer Therapy. 癌症治疗中的共轭亚油酸
Current drug delivery Pub Date : 2025-01-01 DOI: 10.2174/0115672018325362240811164655
Jeneesha George, Asit Ranjan Ghosh
{"title":"Conjugated Linoleic Acid in Cancer Therapy.","authors":"Jeneesha George, Asit Ranjan Ghosh","doi":"10.2174/0115672018325362240811164655","DOIUrl":"10.2174/0115672018325362240811164655","url":null,"abstract":"<p><p>Conjugated Linoleic Acid (CLA) is a polyunsaturated dietary fatty acid. Probiotics can biohydrogenate CLA with multiple health benefits, especially in cancer treatment. <i>In vitro, in vivo</i>, and clinical studies have confirmed CLA isomers to possess anti-cancer activity. CLA has demonstrated its potential as an alternative treatment for cancer and also used as an adjuvant to reduce the side effects of existing treatment methods. The mechanism of the anticancer activity of CLA is still not clear; however, it may involve intervention with the cell cycle and modulation of gene expression. A greater potential of CLA for cancer treatment has been supported by more and more clinical trials to evaluate its potential. Some advanced technologies are in progress to overcome the flaws of current methods and enhance the microbial production of CLA. In conclusion, nutritional enrichment as a functional food and direct consumption of CLA may contribute to cancer management.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"450-464"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Products as Promising Therapeutic Agents for Angiogenesis Inhibition. 抑制血管生成的新型治疗药物。
Current drug delivery Pub Date : 2025-01-01 DOI: 10.2174/0115672018277869231217165048
Shaheen Sultana, Shahnaz Sultana, Shehla Nasar Mir Najib Ullah, Ameeduzzafar Zafar
{"title":"Novel Products as Promising Therapeutic Agents for Angiogenesis Inhibition.","authors":"Shaheen Sultana, Shahnaz Sultana, Shehla Nasar Mir Najib Ullah, Ameeduzzafar Zafar","doi":"10.2174/0115672018277869231217165048","DOIUrl":"10.2174/0115672018277869231217165048","url":null,"abstract":"<p><strong>Objective: </strong>Angiogenesis is the process of forming new blood vessels from pre-existing vessels and occurs during development, wound healing, and tumor growth. In this review, we aimed to present a comprehensive view of various factors contributing to angiogenesis during carcinogenesis. Anti-angiogenesis agents prevent or slow down cancer growth by interrupting the nutrients and blood supply to the tumor cells, and thus can prove beneficial for treatment.</p><p><strong>Method: </strong>The discovery of several novel angiogenic inhibitors has helped to reduce both morbidity and mortality from several life-threatening diseases, such as carcinomas. There is an urgent need for a new comprehensive treatment strategy combining novel anti-angiogenic agents for the control of cancer. The article contains details of various angiogenic inhibitors that have been adopted by scientists to formulate and optimize such systems in order to make them suitable for cancer.</p><p><strong>Results: </strong>The results of several researches have been summarized in the article and all of the data support the claim that anti-angiogenic agent is beneficial for cancer treatment.</p><p><strong>Conclusion: </strong>This review focuses on novel antiangiogenic agents that play a crucial role in controlling carcinogenesis.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"181-194"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139418908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing, Optimising, and Assessing a Novel Emulgel Containing Minoxidil for Controlled Drug Release, Incorporating Marine-based Polymers. 设计、优化和评估一种含有米诺地尔的新型 Emulgel(含米诺地尔),用于控制药物释放,并将海洋聚合物融入其中。
Current drug delivery Pub Date : 2025-01-01 DOI: 10.2174/0115672018271502231226113423
Flowerlet Mathew, A Mary Saral
{"title":"Designing, Optimising, and Assessing a Novel Emulgel Containing Minoxidil for Controlled Drug Release, Incorporating Marine-based Polymers.","authors":"Flowerlet Mathew, A Mary Saral","doi":"10.2174/0115672018271502231226113423","DOIUrl":"10.2174/0115672018271502231226113423","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop an emulgel containing minoxidil as a drug for hair growth promotion in diseases, such as androgenetic alopecia, using gelling agents, such as chitosan and fucoidan.</p><p><strong>Methods: </strong>In this study, gelling agents were selected for the emulgel formulation. By various evaluation tests and through optimization, the chitosan-fucoidan combination was selected as the gelling agent for the preparation of emulgel using various evaluation parameters.</p><p><strong>Results: </strong>X2, the best emulgel formulation, contained 2.54 % chitosan and 0.896 % fucoidan. Chitosan prolonged the duration of drug release, and controlled release was obtained. Fucoidan increased the gelling activity, water absorption rate, and stability of the formulation. In this study, the X2 formulation showed the highest percentage of drug release at the 12th hour. It was found to be 99.7%, which followed the zero-order release model.</p><p><strong>Conclusion: </strong>Owing to the wide range of biological activities of fucoidan, the loaded active substance can be protected, and at the same time, its potency can be improved, resulting in effective treatment. Because fucoidan has diverse properties and potential, it will be widely used in the biomedical and pharmaceutical industries in the future.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"231-247"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139743092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Evaluation of Tetrandrine Nanocrystals to Improve Bioavailability. 粉防己碱纳米晶的制备及评价提高生物利用度。
Current drug delivery Pub Date : 2025-01-01 DOI: 10.2174/0115672018341709241121092617
Fei Xue, Lan Yang, Shuai Ma, Jin Hua Chang, Pei Liu, Xi Gang Liu, Ru Xing Wang
{"title":"Preparation and Evaluation of Tetrandrine Nanocrystals to Improve Bioavailability.","authors":"Fei Xue, Lan Yang, Shuai Ma, Jin Hua Chang, Pei Liu, Xi Gang Liu, Ru Xing Wang","doi":"10.2174/0115672018341709241121092617","DOIUrl":"10.2174/0115672018341709241121092617","url":null,"abstract":"<p><strong>Introduction/background: </strong>Tetrandrine (TET) has multiple pharmacological activities, but its water solubility is poor, which is the main reason for its low bioavailability.</p><p><strong>Objectives: </strong>The purpose of this study was to prepare TET nanocrystals (TET-NCs) using a grinding method to enhance the dissolution rate and ultimately improve the bioavailability of TET.</p><p><strong>Methods: </strong>TET-NCs were synthesized via media milling, employing Poloxam 407 (P407) as surface stabilizer and mannitol as a cryoprotectant during freeze-drying. The crystal structure, particle diameter, and zeta potential were characterized using differential scanning calorimetry (DSC), Fouriertransform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The in vitro release behavior and pharmacokinetics of TET-NCs were assessed. The cytotoxicity of TET and TET-NCS on RAW264.7 cells was determined by the CCK-8 method.</p><p><strong>Results: </strong>The particle size of TET-NCs was 360.0±7.03 nm, PDI was 0.26±0.03, and zeta potential was 6.64±0.22 mV. The cumulative dissolution within 60 minutes was 96.40±2.31%. The pharmacokinetic study showed that AUC0-72 h and Cmax of TET-NCs were significantly enhanced by 3.07 and 2.57 times, respectively, compared with TET (p<0.01). TET-NCs significantly increased the cell inhibition on RAW264.7 cells compared to the TET (P<0.01).</p><p><strong>Conclusion: </strong>The preparation of TET-NCs enhanced dissolution rate and bioavailability significantly, and it also improved the inhibition effect of RAW264.7 cells.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"648-657"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current Trends in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Malaria: A Review. 基于纳米技术的疟疾诊断和治疗给药系统的当前趋势:综述》(Nanotechnology-based Drug Delivery Systems for the Diagnosis and Treatment of Malaria: A Review)。
Current drug delivery Pub Date : 2025-01-01 DOI: 10.2174/0115672018291253240115012327
Rohitas Deshmukh, Bhuvaneshwari Dewangan, Ranjit K Harwansh, Rutvi Agrawal, Akash Garg, Himansu Chopra
{"title":"Current Trends in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Malaria: A Review.","authors":"Rohitas Deshmukh, Bhuvaneshwari Dewangan, Ranjit K Harwansh, Rutvi Agrawal, Akash Garg, Himansu Chopra","doi":"10.2174/0115672018291253240115012327","DOIUrl":"10.2174/0115672018291253240115012327","url":null,"abstract":"<p><p>Malaria is still a major endemic disease transmitted in humans via Plasmodium-infected mosquitoes. The eradication of malarial parasites and the control measures have been rigorously and extensively deployed by local and international health organizations. Malaria's recurrence is a result of the failure to entirely eradicate it. The drawbacks related to malarial chemotherapy, non-specific targeting, multiple drug resistance, requirement of high doses, intolerable toxicity, indefinable complexity of Plasmodium's life cycle, and advent of drug-resistant strains of <i>P. falciparum</i> are the causes of the ineffective eradication measures. With the emergence of nanotechnology and its application in various industrial domains, the rising interest in the medical field, especially in epidemiology, has skyrocketed. The applications of nanosized carriers have sparked special attention, aiming towards minimizing the overall side effects caused due to drug therapy and avoiding bioavailability. The applications of concepts of nanobiotechnology to both vector control and patient therapy can also be one of the approaches. The current study focuses on the use of hybrid drugs as next-generation antimalarial drugs because they involve fewer drug adverse effects. The paper encompasses the numerous nanosized delivery-based systems that have been found to be effective among higher animal models, especially in treating malarial prophylaxis. This paper delivers a detailed review of diagnostic techniques, various nanotechnology approaches, the application of nanocarriers, and the underlying mechanisms for the management of malaria, thereby providing insights and the direction in which the current trends are imparted from the innovative and technological perspective.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"310-331"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139543892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Betulin-NLC-hydrogel for the Treatment of Psoriasis-like Skin Inflammation: Optimization, Characterisation, and In vitro and In vivo Evaluation. 用于治疗牛皮癣样皮肤炎症的白桦脂素-NLC-水凝胶:白桦脂-NLC-水凝胶用于治疗牛皮癣样皮肤炎症:优化、表征、体外和体内评估
Current drug delivery Pub Date : 2025-01-01 DOI: 10.2174/0115672018329544240922151617
Dev Prakash, Anjali Chaudhary, Amit Chaudhary
{"title":"Betulin-NLC-hydrogel for the Treatment of Psoriasis-like Skin Inflammation: Optimization, Characterisation, and <i>In vitro</i> and <i>In vivo</i> Evaluation.","authors":"Dev Prakash, Anjali Chaudhary, Amit Chaudhary","doi":"10.2174/0115672018329544240922151617","DOIUrl":"10.2174/0115672018329544240922151617","url":null,"abstract":"<p><strong>Introduction: </strong>Psoriasis is a chronic inflammatory skin disorder that poses significant challenges regarding effective and targeted drug delivery. Bioactive substances like betulin have shown tremendous utility in treating these conditions; however, they pose limited utility owing to their physicochemical characteristics. Here, we aimed to develop a novel topical dosage form for treating psoriasis, utilising betulin-loaded Nanostructured lipid carriers (NLCs) incorporated into a hydrogel matrix.</p><p><strong>Methods: </strong>The optimization of the formulation was meticulously conducted using a design expert-13 software, and its diverse physicochemical attributes were thoroughly examined. Evaluating betulin's <i>in vitro</i> release pattern from the NLC-hydrogel demonstrated consistent and regulated drug release properties. Additionally, the formulation demonstrated improved skin penetration abilities as determined by <i>in vitro</i> skin permeation experiments employing Franz diffusion cells-furthermore, the therapeutic effectiveness of the betulin-NLC-hydrogel was assessed by an <i>in vivo</i> experiment carried out using an imiquimod-induced psoriasis-like skin inflammation model in BALB/c female mice.</p><p><strong>Results: </strong>The NLCs exhibited a pH of 5.67±0.86, particle size of 148.16±12.66 nm, and zeta potential of -22.84±2.37 mV, ensuring stability and suitability for topical use. The gel, with a pH of 6.05±0.43 and viscosity of 17550±120 cPs, showed enhanced skin hydration and lipid restoration. Drug release studies indicated a slower release from NLCs and gel, improving skin retention. Stability tests revealed that the formulations were stable at room temperature but not at elevated temperatures. The <i>in vitro</i> safety profile of the formulation revealed no significant adverse effects on HaCaT cell lines. The NLC gel demonstrated significant anti-psoriatic activity, reducing inflammation and cytokine levels.</p><p><strong>Conclusion: </strong>The betulin-NLC-hydrogel formulation exhibited promising characteristics for the topical treatment of psoriasis, showcasing optimised drug delivery, sustained release, and notable therapeutic efficacy. The findings from this study provide a foundation for the potential clinical translation of this innovative topical dosage form for improved psoriasis management.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"627-647"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fiber Technology in Drug Delivery and Pharmaceuticals. 给药和制药中的纤维技术。
Current drug delivery Pub Date : 2025-01-01 DOI: 10.2174/0115672018279628231221105210
Shivang Dhoundiyal, Aditya Sharma, Md Aftab Alam
{"title":"Fiber Technology in Drug Delivery and Pharmaceuticals.","authors":"Shivang Dhoundiyal, Aditya Sharma, Md Aftab Alam","doi":"10.2174/0115672018279628231221105210","DOIUrl":"10.2174/0115672018279628231221105210","url":null,"abstract":"<p><p>The field of fiber technology is a dynamic and innovative domain that offers novel solutions for controlled and targeted therapeutic interventions. This abstract provides an overview of key aspects within this field, encompassing a range of techniques, applications, commercial developments, intellectual property, and regulatory considerations. The foundational introduction establishes the significance of fiber-based drug delivery systems. Electrospinning, a pivotal technique, has been explored in this paper, along with its various methods and applications. Monoaxial, coaxial, triaxial, and side-by-side electrospinning techniques each offer distinct advantages and applications. Centrifugal spinning, solution and melt blowing spinning, and pressurized gyration further contribute to the field's diversity. The review also delves into commercial advancements, highlighting marketed products that have successfully harnessed fiber technology. The role of intellectual property is acknowledged, with patents reflecting the innovative strides in fiber-based drug delivery. The regulatory perspective, essential for ensuring safety and efficacy, is discussed in the context of global regulatory agencies' evaluations. This review encapsulates the multidimensional nature of fiber technology in drug delivery and pharmaceuticals, showcasing its potential to revolutionize medical treatments and underscores the importance of continued collaboration between researchers, industry, and regulators for its advancement.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":"261-282"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139567374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信