The American journal of Chinese medicine最新文献

筛选
英文 中文
Unraveling the Mechanisms of Active Saponins from Rhizoma Anemarrhenae Against Ferroptosis in Alzheimer's Disease: Integrating Network Pharmacology, Cell Membrane Chromatography, and Experimental Validation. 揭示母藤活性皂苷抗阿尔茨海默病的机制:结合网络药理学、细胞膜色谱和实验验证。
The American journal of Chinese medicine Pub Date : 2025-01-01 DOI: 10.1142/S0192415X25500429
Jing Peng, Zhongjiao Lu, Fangfang Sai, Liang Min, Xu Zhang, Dan Ru, Yaying Song, Xin Wei, Li Gao, Hai-Qiao Wang
{"title":"Unraveling the Mechanisms of Active Saponins from <i>Rhizoma Anemarrhenae</i> Against Ferroptosis in Alzheimer's Disease: Integrating Network Pharmacology, Cell Membrane Chromatography, and Experimental Validation.","authors":"Jing Peng, Zhongjiao Lu, Fangfang Sai, Liang Min, Xu Zhang, Dan Ru, Yaying Song, Xin Wei, Li Gao, Hai-Qiao Wang","doi":"10.1142/S0192415X25500429","DOIUrl":"https://doi.org/10.1142/S0192415X25500429","url":null,"abstract":"<p><p><i>Rhizoma Anemarrhenae</i>, in which the primary active components are saponins, has shown potential in treating Alzheimer's disease (AD). However, the specific mechanisms of action and the active saponins responsible remain unclear. This study aimed to explore the mechanisms of action and identify the active components of <i>Rhizoma Anemarrhenae</i> saponins (RAS). First, 24 saponin components in RAS and eight absorbed saponins in rats were identified. Then, a component-target interaction network between eight saponins and 83 targets was constructed after target refinement and SPR validation. Bioinformatics analysis indicated that these targets were closely related to lipid metabolism, iron metabolism, and the AMPK signaling pathway. In addition, differentially expressed genes from RAS intervention were significantly enriched in the ferroptosis pathway. <i>In vitro</i> and <i>in vivo</i> assays demonstrated that RAS could inhibit neuronal ferroptosis and alleviate cognitive impairment. Notably, the ferroptosis inducer markedly reversed the neuroprotective effects of RAS. Moreover, silencing AMPK or Nrf2 using the siRNA or AMPK inhibitor abolished the neuroprotective and ferroptosis-inhibitory effects of RAS <i>in vivo</i> or <i>in vitro</i>. Silencing LKB1 reversed the RAS-induced activation of the AMPK/Nrf2 pathway, and co-immunoprecipitation assay revealed that RAS could promote the LKB1-AMPK interaction. Finally, a 2D comprehensive NC/CMC system was used to screen out four potential saponins that inhibit neuronal ferroptosis, with Timosaponin B-III, Timosaponin A-I, and Timosaponin A-III being validated. In conclusion, RAS exerts anti-AD effects by enhancing the LKB1-AMPK interaction, and activating the AMPK/Nrf2 pathway, inhibiting neuronal ferroptosis as a result. Three saponins are identified as the active components potentially responsible for this effect.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":"53 4","pages":"1119-1154"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144532191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant-Derived Natural Products Ameliorating Hypertension via Signaling Pathways: A Review. 植物源性天然产物通过信号通路改善高血压:综述。
The American journal of Chinese medicine Pub Date : 2025-01-01 Epub Date: 2025-07-08 DOI: 10.1142/S0192415X2550051X
Yushen Feng, Juan Zhou, Min Zhong, Didi Ma, Jian Mao, Fugui Liu, Chengxi Jiang, Xiaodan Wu, Lan Jiang
{"title":"Plant-Derived Natural Products Ameliorating Hypertension via Signaling Pathways: A Review.","authors":"Yushen Feng, Juan Zhou, Min Zhong, Didi Ma, Jian Mao, Fugui Liu, Chengxi Jiang, Xiaodan Wu, Lan Jiang","doi":"10.1142/S0192415X2550051X","DOIUrl":"10.1142/S0192415X2550051X","url":null,"abstract":"<p><p>More than one billion people worldwide suffer from hypertension, and essential arterial hypertension is in particular a major risk factor for cardiovascular diseases. These conditions can lead to complications such as stroke, renal failure, cardiac hypertrophy, and heart failure. Despite extensive research on various antihypertensive drugs, an increasing number of people are unable to effectively control their hypertension. Further optimization of their treatment is required. Given the pathogenesis of hypertension, natural products (NPs) have emerged as a promising source of potential antihypertensive agents. NPs can prevent the development of hypertension by targeting oxidative stress, inflammation, vascular remodeling, and neurohormonal pathways. These targets provide the foundation for the application of NPs in clinical treatment. This review assesses NPs with potential antihypertensive activities published between 2019 and 2024. A total of 70 unique NPs were identified through PubMed and Web of Science. Seventy unique NPs were categorized into flavonoids (20 compounds), terpenoids (24 compounds), alkaloids (17 compounds), and plant-derived extracts (9 species). These products were classified according to their structural frameworks, and their bioactivities were briefly summarized. Future research should prioritize NPs with dual anti-oxidant/anti-inflammatory properties for clinical experiments, advanced delivery systems for improved bioavailability, and interdisciplinary approaches integrating synthetic biology for scalable production.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1309-1353"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144586024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Traditional Chinese Medicine in Lung Cancer Management: A Review. 中医药在肺癌治疗中的作用综述
The American journal of Chinese medicine Pub Date : 2025-01-01 Epub Date: 2025-01-29 DOI: 10.1142/S0192415X25500053
Zhijing Rao, Zhongqi Wang, Haibin Deng, Wan Su, Xiaowei Huang, Zhenye Xu
{"title":"Role of Traditional Chinese Medicine in Lung Cancer Management: A Review.","authors":"Zhijing Rao, Zhongqi Wang, Haibin Deng, Wan Su, Xiaowei Huang, Zhenye Xu","doi":"10.1142/S0192415X25500053","DOIUrl":"10.1142/S0192415X25500053","url":null,"abstract":"<p><p>With the continuous advancements in modern medicine, significant progress has been made in the treatment of lung cancer. Current standard treatments, such as surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, have notably improved patient survival. However, the adverse effects associated with these therapies limit their use and impact the overall treatment process. Traditional Chinese medicine (TCM) has shown holistic, multi-target, and multi-level therapeutic effects. Numerous studies have highlighted the importance of TCM's role in the comprehensive management of lung cancer, demonstrating its benefits in inhibiting tumor growth, reducing complications, mitigating side effects, and enhancing the efficacy of conventional treatments. Here, we review the main mechanisms of TCM in combating lung cancer, inducing cancer cell cycle arrest and apoptosis. These include inhibiting lung cancer cell growth and proliferation, inhibiting cancer cell invasion and metastasis, suppressing angiogenesis and epithelial-mesenchymal transition (EMT), and modulating antitumor inflammatory responses and immune evasion. This paper aims to summarize recent advancements in the application of TCM for lung cancer, emphasizing its unique advantages and distinctive features. In promoting the benefits of TCM, we seek to provide valuable insights for the integrated treatment of lung cancer.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"97-117"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-Inflammatory Effects of Bioactive Peptides from Chinese Herbal Medicine: A Review. 中药活性肽抗炎作用研究进展
IF 5.5
The American journal of Chinese medicine Pub Date : 2025-01-01 Epub Date: 2025-09-05 DOI: 10.1142/S0192415X25500739
Rujia Cui, Yuchen Wang, Mengyao Wang, Zengli Wang
{"title":"Anti-Inflammatory Effects of Bioactive Peptides from Chinese Herbal Medicine: A Review.","authors":"Rujia Cui, Yuchen Wang, Mengyao Wang, Zengli Wang","doi":"10.1142/S0192415X25500739","DOIUrl":"10.1142/S0192415X25500739","url":null,"abstract":"<p><p>Inflammation is a pathological process implicated in a wide range of diseases, and is orchestrated by complex regulatory networks at both transcriptional and post-transcriptional levels. A growing body of evidence supports the understanding that numerous natural compounds exhibit robust anti-inflammatory activity, structural diversity, low toxicity, and minimal side effects. These qualities make them promising leads for therapeutic development. Within the framework of Traditional Chinese Medicine (TCM), which has been extensively applied in the management of chronic conditions, specific herbal remedies, such as <i>Paeonia lactiflora</i> for rheumatoid arthritis, and <i>Angelica sinensis</i> and <i>Codonopsis pilosula</i> for cardiovascular regulation, have clinically relevant efficacy. In recent years, bioactive peptides (BAPs) derived from Chinese medicinal herbs, including peptides from <i>Cordyceps sinensis</i> and <i>Panax ginseng</i>, have drawn considerable international attention for their anti-inflammatory potential. This review delineates the principal methodologies for the extraction, isolation, and purification of anti-inflammatory peptides derived from medicinal herbs, highlights recent advances in their therapeutic application for inflammatory disorders, critically assesses existing barriers to clinical translation, and outlines future research priorities.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1951-1982"},"PeriodicalIF":5.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144994994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Notoginsenoside R1 Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Apoptosis via Activating Wnt/β-Catenin Signaling. 三七皂苷R1通过激活Wnt/β-Catenin信号抑制细胞凋亡改善心肌缺血/再灌注损伤
IF 5.5
The American journal of Chinese medicine Pub Date : 2025-01-01 Epub Date: 2025-09-10 DOI: 10.1142/S0192415X2550082X
Rui Sun, Wei-Yi Huang, Zi-Yang Guo, Fang Liu, Qiang Sun, Wen-Jun Fan, Dan-Mei Huang, Yan-Mei Zhang, Fen-Fei Gao, Bin Wang
{"title":"Notoginsenoside R1 Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Apoptosis via Activating Wnt/β-Catenin Signaling.","authors":"Rui Sun, Wei-Yi Huang, Zi-Yang Guo, Fang Liu, Qiang Sun, Wen-Jun Fan, Dan-Mei Huang, Yan-Mei Zhang, Fen-Fei Gao, Bin Wang","doi":"10.1142/S0192415X2550082X","DOIUrl":"10.1142/S0192415X2550082X","url":null,"abstract":"<p><p>Notoginsenoside R1 (NGR1), a natural triterpenoid saponin, is extracted from <i>Panax notoginseng</i>, and has cardiovascular and cerebrovascular protective effects due to anti-inflammatory, anti-oxidant, and anti-apoptotic properties. Previous research has suggested a protective role for NGR1 in myocardial ischemia/reperfusion (MI/R) injury. However, the potential mechanisms involved have not been fully elucidated. Thus, the objective of our study was to validate the protective role of NGR1 in MI/R injury and to investigate its underlying mechanisms. Results showed that, in mice, NGR1 substantially improved heart function, reduced infarct area, and inhibited cardiomyocyte apoptosis. Mechanistically, network pharmacological predictions suggested that NGR1 could inhibit apoptosis by activating the Wnt signaling pathway. Experimentally, the protective effects of NGR1 in inhibiting cardiomyocyte apoptosis, improving cardiac function, and reducing infarct size were significantly attenuated with the use of the Wnt signaling inhibitor XAV-939. Collectively, our investigation demonstrated that NGR1 improves myocardial injury triggered by ischemia/reperfusion (I/R) by enhancing Wnt/[Formula: see text]-catenin pathway activity, which in turn suppresses apoptosis.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"2223-2243"},"PeriodicalIF":5.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145031638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chinese Medicine for the Treatment of Liver Cirrhosis: The Mechanism of Cellular Autophagy. 中药治疗肝硬化:细胞自噬的机制。
The American journal of Chinese medicine Pub Date : 2025-01-01 Epub Date: 2025-03-12 DOI: 10.1142/S0192415X25500168
Shihao Zheng, Tianyu Xue, Qiuyue Wang, Pingxin Zhang, Wenying Qi, Chengyuan Xue, Xiaoke Li, Hongbo Du, Peng Zhang, Xiaobin Zao, Yongan Ye
{"title":"Chinese Medicine for the Treatment of Liver Cirrhosis: The Mechanism of Cellular Autophagy.","authors":"Shihao Zheng, Tianyu Xue, Qiuyue Wang, Pingxin Zhang, Wenying Qi, Chengyuan Xue, Xiaoke Li, Hongbo Du, Peng Zhang, Xiaobin Zao, Yongan Ye","doi":"10.1142/S0192415X25500168","DOIUrl":"10.1142/S0192415X25500168","url":null,"abstract":"<p><p>Liver cirrhosis is a critical stage in the progression of various chronic liver diseases, often leading to severe complications such as ascites, hepatic encephalopathy, and a high mortality rate, and it thus poses a serious threat to patient life. The activation of hepatic stellate cells is a central driver of disease progression. Cellular autophagy, a lysosome-mediated degradation process, plays a key role in maintaining cellular function and dynamic homeostasis. Research has shown that autophagy is closely associated with proteins like LC3, Beclin-1, P62, and mTOR, and is regulated through signaling pathways such as PI3K/Akt/mTOR, Ras/Raf/MEK/ERK, and AMPK/mTOR. Additionally, the relationship between autophagy and apoptosis, as well as between autophagy and exosomes, has been further demonstrated. While modern medicine has made progress in treating cirrhosis, it still faces significant limitations. By contrast, numerous studies have demonstrated the efficacy of traditional Chinese medicine in preventing and treating liver cirrhosis by regulating autophagy, with fewer adverse effects. Chinese herbal monomers and formulations can modulate various autophagy-related signaling pathways, including PI3K/Akt/mTOR, Ras/Raf/MEK/ERK, and AMPK/mTOR, and influence key autophagy proteins such as LC3 and Beclin-1. This modulation inhibits hepatic stellate cell activation, reduces extracellular matrix deposition, and exerts anticirrhotic effects. Moreover, Chinese medicine appears to reduce adverse reactions in cirrhosis treatment and lower the risk of disease recurrence. This review explores the mechanisms of autophagy in the prevention and treatment of liver cirrhosis through Chinese medicine, offering new insights for the development of Chinese medicinal therapies for cirrhosis and their rational clinical application.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"409-433"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143607612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Puerarin Alleviates Alcoholic Liver Disease via Suppressing Lipolysis Induced by Sympathetic Outflow. 葛根素通过抑制交感神经流出诱导的脂肪分解缓解酒精性肝病。
The American journal of Chinese medicine Pub Date : 2025-01-01 DOI: 10.1142/S0192415X25500326
Ke Zheng, Liu Yang, Rui-Shuo Zhang, Yi-Han Qian, Yu-Ge Zhou, Wei-Fan Huang, Jia-Cheng Lin, Yan-Jun Shi, Xiao-Ni Kong
{"title":"Puerarin Alleviates Alcoholic Liver Disease via Suppressing Lipolysis Induced by Sympathetic Outflow.","authors":"Ke Zheng, Liu Yang, Rui-Shuo Zhang, Yi-Han Qian, Yu-Ge Zhou, Wei-Fan Huang, Jia-Cheng Lin, Yan-Jun Shi, Xiao-Ni Kong","doi":"10.1142/S0192415X25500326","DOIUrl":"https://doi.org/10.1142/S0192415X25500326","url":null,"abstract":"<p><p>The aim of this study was to evaluate the therapeutic effect of puerarin (PUE) on alcoholic liver disease (ALD) and elucidate the potential mechanism from the perspective of lipolysis and hepatic steatosis. Assessment of PUE efficacy against ALD was performed using serum biochemical parameters and the histological examination of liver and adipose tissue via Hematoxylin and eosin (H&E) staining. The potential mechanisms underlying the amelioration of ALD by PUE were investigated using Western blotting (WB) analysis and immunofluorescence (IHC) staining. We demonstrated that PUE attenuated steatosis in ALD by alleviating ethanol-induced liver damage and lipid accumulation, suppressing the expression of lipid synthesis genes, upregulating the expression of lipid metabolism genes, and reducing lipolysis by inhibiting adipose triglyceride lipase (ATGL) activation and the phosphorylation of hormone-sensitive lipase (HSL). In conclusion, PUE ameliorates ALD by inhibiting the sympathetic outflow-mediated activation of key lipolysis enzymes ATGL and HSL. These findings provide a solid theoretical foundation for the potential application of PUE in the clinical treatment of ALD.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":"53 3","pages":"863-888"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144082984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Traditional Chinese Medicine Formulae and Chinese Patent Medicines for the Treatment of Diabetic Kidney Disease: Efficacies and Mechanisms. 治疗糖尿病肾病的中药方剂与中成药:疗效与机制。
The American journal of Chinese medicine Pub Date : 2025-01-01 DOI: 10.1142/S0192415X25500260
Haoyu Li, Huan Chen, Renhao Gao, Mingjing Yin, Fang Huang
{"title":"Traditional Chinese Medicine Formulae and Chinese Patent Medicines for the Treatment of Diabetic Kidney Disease: Efficacies and Mechanisms.","authors":"Haoyu Li, Huan Chen, Renhao Gao, Mingjing Yin, Fang Huang","doi":"10.1142/S0192415X25500260","DOIUrl":"https://doi.org/10.1142/S0192415X25500260","url":null,"abstract":"<p><p>Diabetic kidney disease is one of the most significant comorbidities of diabetic patients, and has become the second cause of end-stage renal disease. Current clinical management programs have difficulty in reducing morbidity and poor prognosis, and thus new treatment options and concepts need to be developed. Traditional Chinese medicine formulae and Chinese patent medicines contain a variety of medicinal flavors, laying the material foundation for the multi-target, multi-level therapeutic features. This study describes the main pathologic features of DKD as well as its pathogenesis. Additionally, the categorization of TCM according to its different therapeutic mechanisms is discussed, and the signaling pathways targeted and corresponding biological effects are described in detail. For example, TCM formulae can alleviate oxidative stress through pathways such as Nrf2 and NOX4, can inhibit the development of inflammation through pathways such as TGF-β and NF-κB, and can ameliorate DKD by inhibiting endoplasmic reticulum stress and apoptosis. Moreover, it highlights the superior efficacy of the combined application of TCM formulae and Western medicine over Western medicine alone, which can compensate for the shortcomings of existing DKD treatment methods to a certain extent. TCM formulae and CPMs are promising candidates for the auxiliary treatment of DK, however, the lack of clarity regarding the active ingredients intensifies the difficulty of integrating TCM formulae and CPMs into clinical practice. Further research is warranted to explore the material basis and molecular mechanisms of action of TCM formulae against DKD.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":"53 3","pages":"675-707"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144083045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ginsenoside Rh2 Ameliorates Myocardial Infarction by Regulating Cardiomyocyte Pyroptosis Based on Network Pharmacology, Molecular Docking, and Experimental Verification. 基于网络药理学、分子对接和实验验证的人参皂苷Rh2通过调节心肌细胞焦亡改善心肌梗死
The American journal of Chinese medicine Pub Date : 2025-01-01 Epub Date: 2025-03-18 DOI: 10.1142/S0192415X25500181
Bing Li, Shuanglong Mou, Chenrui Zhang, Tingting Zhu, Xingwei Hu, Mengsha Li
{"title":"Ginsenoside Rh2 Ameliorates Myocardial Infarction by Regulating Cardiomyocyte Pyroptosis Based on Network Pharmacology, Molecular Docking, and Experimental Verification.","authors":"Bing Li, Shuanglong Mou, Chenrui Zhang, Tingting Zhu, Xingwei Hu, Mengsha Li","doi":"10.1142/S0192415X25500181","DOIUrl":"10.1142/S0192415X25500181","url":null,"abstract":"<p><p>Myocardial infarction (MI) is a significant threat to human health worldwide. Following MI, cardiomyocytes (CMs) undergo pyroptosis, exacerbating the damage caused by infarction. Ginseng may play a role in alleviating CM pyroptosis. However, further exploration is needed regarding its main active ingredients and effects. By employing network pharmacology on the active ingredients of ginseng, MI and pyroptosis, and employing molecular docking between such ingredients and pyroptosis-related proteins, we screened for the main ingredient of ginseng. Through network pharmacology and molecular docking, we identified ginsenoside Rh2, which acts on MI and cell pyroptosis, as the most likely active ingredient that stably binds to pyroptosis-related proteins. We subsequently constructed a neonatal rat CM oxygen-glucose deprivation (OGD) model <i>in vitro</i> and an MI mouse model <i>in vivo</i>. Ginsenoside Rh2 was administered, with losartan used as a positive control. In the <i>in vitro</i> OGD model, ginsenoside Rh2 increased the viability of primary rat CMs and mitigated OGD-induced pyroptosis. In the <i>in vivo</i> MI model, ginsenoside Rh2 reduced CM pyroptosis, decreased infarct size, and subsequently improved cardiac function. Our study provides a novel therapeutic strategy for MI by attenuating CM pyroptosis.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"475-499"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143652989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Tea and Epigallocatechin Gallate (EGCG) for Cancer Prevention: A Systematic Review and Meta-Analysis. 绿茶和没食子儿茶素没食子酸酯(EGCG)预防癌症:一项系统综述和荟萃分析。
IF 5.5
The American journal of Chinese medicine Pub Date : 2025-01-01 Epub Date: 2025-08-14 DOI: 10.1142/S0192415X2550065X
Yang Zhang, Qiong Xu, Jiepin Hu, Feng Zhang, Youjie Yu, Longying Ma
{"title":"Green Tea and Epigallocatechin Gallate (EGCG) for Cancer Prevention: A Systematic Review and Meta-Analysis.","authors":"Yang Zhang, Qiong Xu, Jiepin Hu, Feng Zhang, Youjie Yu, Longying Ma","doi":"10.1142/S0192415X2550065X","DOIUrl":"https://doi.org/10.1142/S0192415X2550065X","url":null,"abstract":"<p><p>Previous studies have reported inconsistent effects of green tea and its extract, epigallocatechin gallate (EGCG), on cancer prevention. We aimed to uncover the protective effects of green tea or EGCG against cancer, and to assess the dose-response relationship between cancer risk and green tea consumption by performing a comprehensive meta-analysis of cohort studies. A systematic search of the PubMed, Embase, CENTRAL, AMED, CancerLit, AACR, and CBM databases was conducted from the date of database creation to October 26, 2023, to collect randomized controlled trials (RCTs) and cohort studies on the association between green tea or green tea extract EGCG intake and the risk of cancer occurrence. Meta-analysis was performed using the RevMan 5.4 software and Stata 16 after an independent screening of the literature, extraction of information, and evaluation by two investigators of the risk of bias in included studies. Funnel plots were used to evaluate the publication bias. Dose-response relationships were evaluated using a two-stage restricted cubic spline regression model. The study protocol was registered in PROSPERO (CRD42023484787). The search yielded 2334 papers, and 43, including 7 RCTs and 36 cohort studies, were finally included. The results of the meta-analysis showed that green tea (relative risk [RR]: 0.91, 95% confidence interval [CI]: 0.86-0.96) and EGCG (RR: 0.72, 95% CI: 0.54-0.97) could reduce the risk of cancer to a certain extent compared to controls. It had an especially notable effect in reducing the risk of prostate cancer (RR: 0.43, 95% CI: 0.22-0.83), oral cancer (RR: 0.44, 95% CI: 0.01-0.87), gallbladder cancer (RR: 0.72, 95% CI: 0.51-0.94), and hematological cancers (RR: 0.72, 95% CI: 0.49-0.95), with statistically significant differences. Additionally, the dose-response meta-analysis revealed a significant negative linear correlation between high doses, long-term consumption of green tea, and cancer risk. Green tea or EGCG intake can prevent some cancers. High doses and long-term consumption of green tea could achieve better benefits, providing a basis for the dietary guidelines for green tea in preventing cancer. However, given the heterogeneity of the included studies, our findings still need to be validated by conducting higher-quality studies.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":"53 6","pages":"1755-1784"},"PeriodicalIF":5.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144984588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信