Lin Wang, Li Shao, Yong-Chao Gao, Jing Liu, Xu-Dong Li, Jie Zhou, Shuang-Feng Li, Yue-Lin Song, Bo Liu, Wei Zhang, Wei-Hua Huang
{"title":"<i>Panax notoginseng</i> Saponins Alleviate Inflammatory Bowel Disease via Alteration of Gut Microbiota-Bile Acid Metabolism.","authors":"Lin Wang, Li Shao, Yong-Chao Gao, Jing Liu, Xu-Dong Li, Jie Zhou, Shuang-Feng Li, Yue-Lin Song, Bo Liu, Wei Zhang, Wei-Hua Huang","doi":"10.1142/S0192415X25500223","DOIUrl":"https://doi.org/10.1142/S0192415X25500223","url":null,"abstract":"<p><p>Bile acid metabolism mediated by gut microbiota is significantly related to immunity regulation that plays an important role in the development and treatment of inflammatory bowel disease (IBD). Our previous study has demonstrated that <i>Panax notoginseng</i> saponins (PNS) alleviate colitis due to the regulation of T helper 17/Regulatory T cells (Th17/Treg) balance via gut microbiota. However, the effects and mechanism of PNS on colitis pertinent to bile acid metabolism mediated by gut microbiota remain elusive. This study aims to investigate the anti-colitis mechanism of PNS by regulating the Th17/Treg balance pertinent to gut microbiota-bile acid metabolism. Results showed that PNS significantly decreased the relative abundance of <i>Allobaculum</i>, <i>Dubosiella</i>, <i>Muribaculum</i>, and <i>Alistipes</i>, and up-regulated the relative contents of conjugated bile acids, such as TCA and TCDCA. Fecal microbiota transplantation (FMT) showed that the gut microbiota remodeled by PNS had a regulatory effect on bile acid metabolism, and up-regulated the relative contents of TCA and TCDCA, which alleviated IBD and promoted Treg cell expression <i>in</i> <i>vivo</i> and <i>in vitro</i>. Taken together, PNS could reshape the profiling of gut microbiota to generate more TCA and TCDCA, which improve the balance of Th17/Treg to exert anti-IBD effects.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1-30"},"PeriodicalIF":0.0,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143756715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intestinal Absorption Characteristics and Reciprocal Interactions of <i>Forsythiae Fructus</i> and <i>Lonicerae Japonicae Flos</i>-Containing Chinese Herbal Formulation with Human Gut Microbiome.","authors":"Jia-Yuan He, Fu-Lan Xiao, Qin-Yue Zheng, Chang-Hong Wang, Yi-Yue Tang, Jun-Xuan Fu, Jia-Yi Huang, Lian-Di Zhou, Qi-Hui Zhang","doi":"10.1142/S0192415X25500211","DOIUrl":"https://doi.org/10.1142/S0192415X25500211","url":null,"abstract":"<p><p>The intestinal absorption of active herbal constituents plays an important role in the biomedical efficacy of Traditional Chinese Medicine (TCM) formulations after oral administration. TCM compounds with low oral bioavailability can reach the distal intestine and then interact with intestinal flora, influencing the botanical pharmacological effects. In this study, <i>in vitro</i> digestion and an <i>ex vivo</i> Ussing chamber model were utilized to evaluate the intestinal absorption behavior of <i>Forsythiae Fructus</i>-<i>Lonicerae Japonicae Flos</i>-containing Yinqiao Jiedu Granule (YQJDG). It was found that the jejunum exhibited active absorption effects for some components of the formula, while the oral bioavailability of other herbal ingredients was low. Through further research using a combined UPLC-MS/MS and 16S rDNA sequencing technique, we studied the existence of the reciprocal interactions between YQJDG and gut microbiome. The <i>in vitro</i> fecal fermentation results showed that YQJDG significantly impacted the microbial community composition. The YQJDG markedly increased the abundance of beneficial microorganisms, such as <i>Parabacteroides distasonis</i> and <i>Streptococcus gallolyticus</i> subsp. <i>Macedonicus,</i> and suppressed the abundance of conditional pathogens including <i>Prevotella steorerea, Haemophilus parainfluenzae</i>, and <i>Bacteroides</i>. These effects may potentially contribute to the body's immune functions and anti-inflammatory capacities. UPLC-MS/MS analysis suggested that the fecal microbiota chemically transformed constituents with low bioavailability to more readily absorbed potentially active metabolites. These findings provided valuable insights into the absorption characteristics of YQJDG and its interaction with the gut microbiome, further facilitating our understanding of precise pharmacological mechanisms of action of this Chinese herbal formulation.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1-24"},"PeriodicalIF":0.0,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143722818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen Liu, Zhibin Jiang, Ruirui Wang, Xiongjian Zhang, Xiaoqing Jiang, Can Chen, Pengfei Guo, Ming Yi, Wei Li
{"title":"Targeting EGFR-Mcl-1 Axis by Piperlongumine as a Novel Strategy for Non-Small Cell Lung Cancer Therapy.","authors":"Wen Liu, Zhibin Jiang, Ruirui Wang, Xiongjian Zhang, Xiaoqing Jiang, Can Chen, Pengfei Guo, Ming Yi, Wei Li","doi":"10.1142/S0192415X25500235","DOIUrl":"https://doi.org/10.1142/S0192415X25500235","url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) is a malignancy that faces serious resistance challenges in treatment. In this study, we identified Piperlongumine as a promising therapeutic candidate to overcome Osimertinib resistance in NSCLC. We systematically investigated the inhibitory effect of Piperlongumine on NSCLC cells and confirmed that it could effectively inhibit the <i>in vitro</i> kinase activity of wild-type (WT), exon 19 deletion, and L858R/T790M-mutated EGFR. We also found that Piperlongumine-induced intrinsic apoptosis by interfering with the EGFR signaling pathway, which was characterized by the down-regulation of the anti-apoptotic protein Mcl-1. Further mechanistic studies revealed that Piperlongumine-induced degradation of Mcl-1 was dependent on the Akt-GSK3[Formula: see text] signaling pathway. Additionally, Piperlongumine-promoted interaction between Mcl-1 and [Formula: see text]-TRCP, thereby enhancing [Formula: see text]-TRCP-mediated ubiquitination and the degradation of Mcl-1. Furthermore, Piperlongumine significantly inhibited tumor growth in both Osimertinib-sensitive and resistant NSCLC xenograft models. These findings highlight the potential of Piperlongumine as an effective agent in overcoming EGFR-targeted therapy resistance and suggest new avenues for its clinical application in NSCLC treatment.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1-23"},"PeriodicalIF":0.0,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143722899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-Xin Yao, Chen-Hao Yao, Chao-Yang Zhang, Xian-Zhi Peng, Shu Dai, Yu-Jie Yu, Yan-Zhi Li, Sheng-Lin Zhang, Yun-Xia Li
{"title":"Chlorogenic Acid Ameliorates Acetaminophen-Induced Liver Injury Through AMPK/mTOR/ULK1-Mediated Autophagy Activation.","authors":"Yu-Xin Yao, Chen-Hao Yao, Chao-Yang Zhang, Xian-Zhi Peng, Shu Dai, Yu-Jie Yu, Yan-Zhi Li, Sheng-Lin Zhang, Yun-Xia Li","doi":"10.1142/S0192415X2550020X","DOIUrl":"https://doi.org/10.1142/S0192415X2550020X","url":null,"abstract":"<p><p>Acetaminophen (APAP)-induced liver injury (AILI) is a universal liver disease and the predominant cause of acute liver failure in clinical practice. Autophagy is a highly conserved intracellular degradation pathway, with accumulating evidence indicating its involvement in APAP hepatotoxicity. Notably, the serine/threonine AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/unc-51-like kinase 1 (ULK1) pathway serves as the most classical autophagy pathway and engages in autophagy activation. Thus, pharmacological activation of the AMPK/mTOR/ULK1 pathway has emerged as a critical strategy for addressing AILI. Chlorogenic acid (CGA), a main bioactive constituent isolated from <i>Lonicera japonica</i> Thunb., is an autophagy regulator with potential for AILI therapy. However, whether and how CGA modulates autophagy to antagonize AILI has not yet been elucidated. In the present study, we aim to explore the impact of CGA on AILI, as well as the underlying mechanisms <i>in vitro</i> and <i>in vivo</i>. The results demonstrated that CGA could protect the mice and LO2 cells from oxidative stress and liver injury induced by APAP. Regarding mechanisms, CGA activated the AMPK/mTOR/ULK1 pathway, thereby promoting autophagy. This was evidenced by the degradation of p62/SQSTM1 (hereafter referred to as p62), as well as the up-regulation of LC3B, ATG5, and Beclin1. It is worth noting that the aforementioned, CGA-provided beneficial effects were abrogated by pharmacological inhibition of AMPK with Compound C (CC, an AMPK inhibitor). These [Formula: see text] that CGA alleviates oxidative stress and liver injury induced by APAP, which is contingent upon the regulatory effect of CGA on the AMPK/mTOR/ULK1 axis.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1-20"},"PeriodicalIF":0.0,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143723059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Xue, Yun Bai, Yufei Han, Chuanxiang Yao, Zhenzhe Zhao, Dongyang Liang, Feiyu Lu, Yinping Jin, Jiazhe Song
{"title":"Ginsenoside Rg6 Improves Cisplatin Resistance in Epithelial Ovarian Cancer Cells via Suppressing Fucosylation and Inducing Autophagy.","authors":"Kai Xue, Yun Bai, Yufei Han, Chuanxiang Yao, Zhenzhe Zhao, Dongyang Liang, Feiyu Lu, Yinping Jin, Jiazhe Song","doi":"10.1142/S0192415X25500247","DOIUrl":"https://doi.org/10.1142/S0192415X25500247","url":null,"abstract":"<p><p>Platinum-based chemotherapy remains a mainstay of clinical practice in the standard treatment of epithelial ovarian cancer (EOC). Most patients who receive this treatment, however, develop relapse and drug resistance. Ginsenoside Rg6 (G-Rg6), one of the anticarcinogenic active components in the American ginseng berry, may hold promise in the adjuvant chemotherapy of EOC. In this study, the correlation between fucosylation and cisplatin (cDDP) resistance in EOC cells was validated by gene expression profile analysis and lectin blot. We found that G-Rg6 derived from the American ginseng berry inhibits the cell viability and protein fucosylation of cDDP-resistant EOC cells. G-Rg6-induced G<sub>2</sub>/M-cell cycle arrest was proven to result from the autophagy of cDDP-resistant EOC cells. In addition, we observed that G-Rg6 initiates autophagy in cDDP-resistant EOC cells by inhibiting the GRB2-ERK1/2-mTOR axis, and that high concentration of G-Rg6 treatment leads to cell apoptosis. G-Rg6 also enhances cDDP uptake in A2780CP cells by promoting CTR1 expression and suppressing its core fucosylation. Therapies combining cDDP and G-Rg6 display higher efficacy in inhibiting the cDDP-resistant EOC cells in comparison with the sole application of cDDP, exhibiting strong potential for clinical application. G-Rg6 derived from the American ginseng berry can improve cDDP resistance in EOC cells via suppressing fucosylation and inducing autophagy, suggesting its potential in the adjuvant chemotherapy of EOC patients.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1-26"},"PeriodicalIF":0.0,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143722803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ferroptosis in Endometriosis: Traditional Chinese Medicine Interventions and Mechanistic Insights.","authors":"Dingli Lan, Shuping Huang, Jing Li, Shilang Zhou, Jianli Deng, Shuiyun Qin, Ting Zhou, Fengyun Meng, Weihong Li","doi":"10.1142/S0192415X25500156","DOIUrl":"https://doi.org/10.1142/S0192415X25500156","url":null,"abstract":"<p><p>Endometriosis (EMS) is a chronic, estrogen-dependent inflammatory disease affecting 5-10% of women of reproductive age, characterized by the growth of endometrial tissue on the outside of the uterus. The dysregulation of iron metabolism leads to the accumulation of iron ions at the lesion sites, resulting in oxidative stress and pro-inflammatory responses that promote the progression of EMS. The mechanisms underlying ferroptosis in EMS primarily involve iron accumulation, lipid peroxidation, and loss of glutathione peroxidase 4 activity. These mechanisms confer resistance to ferroptosis within the ectopic tissues and facilitate cell survival and proliferation. Traditional Chinese medicine (TCM) has demonstrated therapeutic potential for modulating ferroptosis. Studies have shown that TCM monomers may regulate ferroptosis by modulating iron transport proteins and anti-oxidant defense mechanisms. TCM formulas employ distinct treatment strategies depending on the stage of EMS: in the early stages, they promote ferroptosis to control lesion growth, whereas in the later stages, they inhibit ferroptosis to reduce oxidative stress and inflammation in order to improve reproductive health and slow disease progression. This study provides a new perspective on potential therapeutic strategies for the management of EMS by summarizing the role of ferroptosis in its pathological mechanisms and reviewing findings on the use of TCM in regulating ferroptosis.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1-24"},"PeriodicalIF":0.0,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143723061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electroacupuncture Preconditioning Attenuates Myocardial Ischemia-Reperfusion Injury in Rats Partially Through Nrf2-Mediated Reduction of Oxidative Stress and Pyroptosis.","authors":"Xuefeng Xia, Yaping Ding, Chunmei Zhou, Hanyu Zhang, Xinran Yang, Chuchu Shen, Senlei Xu, Hongru Zhang, Yihuang Gu, Hua Bai","doi":"10.1142/S0192415X25500132","DOIUrl":"https://doi.org/10.1142/S0192415X25500132","url":null,"abstract":"<p><p>Oxidative stress and pyroptosis have been established as key contributors to myocardial ischemia-reperfusion injury (MIRI). While previous studies reported that electroacupuncture (EA) preconditioning exerted cardioprotective effects, the underlying mechanisms remain elusive. Thus, this study aimed to investigate the effects of EA preconditioning on oxidative stress and pyroptosis in MIRI rats, and explore the role of nuclear factor E2-associated factor 2 (Nrf2) throughout that process. A MIRI model was constructed by ligating the left anterior descending coronary artery for 30 min, followed by 4 h of reperfusion in rats. Prior to modeling, rats were subjected to EA at the Neiguan Point for three days. Furthermore, ML385, a Nrf2 inhibitor, was administered in order to examine the role of Nrf2 in regulating oxidative stress and pyroptosis following EA preconditioning. The results revealed that EA preconditioning improved left ventricular function after MIRI and reduced both the myocardial infarction area and cTnT levels. Meanwhile, EA preconditioning alleviated MIRI-induced oxidative stress and pyroptosis, as evidenced by the downregulation of ROS, MDA, NF-[Formula: see text]B p65, caspase-1, IL-1[Formula: see text], and GSDMD-N, and the upregulation of SOD and HO-1. Mechanistically, EA up-regulated enhanced the expression of Nrf2. However, its cardioprotective effects and ability to attenuate oxidative stress and pyroptosis were suppressed by the inhibition of Nrf2. Taken together, our study indicated that EA preconditioning attenuated MIRI in rats by mitigating oxidative stress and pyroptosis, with Nrf2 playing a vital role in this protective mechanism.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ophiopogonin D from <i>Ophiopogon japonicas</i>-induced USP25 Activity to Reduce Ferroptosis of Macrophage in Acute Lung Injury by the Inhibition of Bound Rac1 and Nox1 Complex.","authors":"Zhichen Pu, Yingjing Gui, Wenhui Wang, Yinping Shui, Haitang Xie, Min Zhao","doi":"10.1142/S0192415X25500193","DOIUrl":"https://doi.org/10.1142/S0192415X25500193","url":null,"abstract":"<p><p>Acute lung injury (ALI) can lead to severe respiratory system damage, characterized by extensive inflammation and lung tissue injury. Ophiopogonin D (OD), from <i>Ophiopogon japonicus</i>, has pharmacological effects such as anti-inflammatory and anti-oxidant, hypoglycemic, anti-aging, and immune regulation properties. This study attempts to identify the protective mechanism of OD against ALI by the inhibition of ferroptosis of macrophages. The tissue-specific expression of USP25 in patients with COVID-19 was evaluated using single-cell data from the China National GeneBank and the GSE147507 dataset from Gene Expression Omnibus (GEO). C57BL/6 mice, Murine bone marrow derived macrophages (BMDM) or RAW264.7 cells were induced by Lipopolysaccharide (LPS). OD prevented ALI, and reduced inflammation levels and oxidative stress in mice models. OD significantly decreased the number of monocyte/macrophages (CD11b [Formula: see text]Ly6G-cells) in the peritoneal cavity after ALI induction. OD-mitigated inflammation and oxidative stress of macrophages in the ALI model. OD-reduced ferroptosis of macrophages in a model of ALI through the inhibition of ROS-induced mitochondrial damage. USP25 is significantly expressed in macrophages in patients with COVID-19 using single-cell analysis. OD-suppressed Rac1/NOX1-derived ROS to reduce the mitochondrial damage of macrophages in a model of ALI by the induction of USP25 activity. OD-identified USP25 at 907-VAL and 975-ARG in an ALI model to suppress USP25 Ubiquitination. OD from <i>Ophiopogon japonicus</i> induces USP25 activity to reduce ferroptosis of macrophages in ALI by binding the Rac1 and Nox1 complex. Therefore, it can be concluded that OD may be a potential therapeutic drug for the treatment of ALI.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chinese Medicine in the Era of Artificial Intelligence: Challenges and Development Prospects.","authors":"Chaoyu Wang, Guowei Dai, Yue Luo, Chuanbiao Wen, Qingfeng Tang","doi":"10.1142/S0192415X25500144","DOIUrl":"https://doi.org/10.1142/S0192415X25500144","url":null,"abstract":"<p><p>Traditional Chinese medicine (TCM) has protected the health of Chinese people for thousands of years. With the rapid development of artificial intelligence (AI), various fields of TCM are facing both opportunities and challenges. This review discusses the development prospects and challenges of Chinese medicine in the AI era, emphasizing that AI, as an important tool in the process of Chinese medicine healthcare services, can assist doctors in making objective, rational and professional treatment decisions, and that AI has a strong potential for development in the field of Chinese medicine. However, the emotions, complex thoughts, and humanistic values of doctors are qualities that AI is currently unable to realize, so as the dominant player, the doctor is indispensable to the medical process. By summarizing and analyzing the current development status of AI in diagnosis, drug research, health management and education in TCM, this paper reveals the development prospects and potential risks of combining TCM with AI, and suggests that AI is an important aid for modernizing and improving the quality of TCM medical care in a coordinated manner.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1-32"},"PeriodicalIF":0.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143652978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ginsenoside Rh2 Ameliorates Myocardial Infarction by Regulating Cardiomyocyte Pyroptosis Based on Network Pharmacology, Molecular Docking, and Experimental Verification.","authors":"Bing Li, Shuanglong Mou, Chenrui Zhang, Tingting Zhu, Xingwei Hu, Mengsha Li","doi":"10.1142/S0192415X25500181","DOIUrl":"https://doi.org/10.1142/S0192415X25500181","url":null,"abstract":"<p><p>Myocardial infarction (MI) is a significant threat to human health worldwide. Following MI, cardiomyocytes (CMs) undergo pyroptosis, exacerbating the damage caused by infarction. Ginseng may play a role in alleviating CM pyroptosis. However, further exploration is needed regarding its main active ingredients and effects. By employing network pharmacology on the active ingredients of ginseng, MI and pyroptosis, and employing molecular docking between such ingredients and pyroptosis-related proteins, we screened for the main ingredient of ginseng. Through network pharmacology and molecular docking, we identified ginsenoside Rh2, which acts on MI and cell pyroptosis, as the most likely active ingredient that stably binds to pyroptosis-related proteins. We subsequently constructed a neonatal rat CM oxygen-glucose deprivation (OGD) model <i>in vitro</i> and an MI mouse model <i>in vivo</i>. Ginsenoside Rh2 was administered, with losartan used as a positive control. In the <i>in vitro</i> OGD model, ginsenoside Rh2 increased the viability of primary rat CMs and mitigated OGD-induced pyroptosis. In the <i>in vivo</i> MI model, ginsenoside Rh2 reduced CM pyroptosis, decreased infarct size, and subsequently improved cardiac function. Our study provides a novel therapeutic strategy for MI by attenuating CM pyroptosis.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1-25"},"PeriodicalIF":0.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143652989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}