SNHG5 Upregulated by Dexmedetomidine Alleviates Myocardial Ischemia/Reperfusion Injury Through LIN28A-Mediated BCAT1 mRNA Stabilization and Autophagy Enhancement.

Jingjia Yu, Fei Ye, Wenzhi Luo, Xu Deng
{"title":"SNHG5 Upregulated by Dexmedetomidine Alleviates Myocardial Ischemia/Reperfusion Injury Through LIN28A-Mediated BCAT1 mRNA Stabilization and Autophagy Enhancement.","authors":"Jingjia Yu, Fei Ye, Wenzhi Luo, Xu Deng","doi":"10.1142/S0192415X25500442","DOIUrl":null,"url":null,"abstract":"<p><p>SNHG5 serves as a key factor in regulating various cancers, and Dexmedetomidine (Dex) protects against myocardial ischemia/reperfusion (I/R) injury. However, the role of SNHG5 in Dex-mediated protection during myocardial I/R remains uninvestigated. In this study, models of rat myocardial I/R injury and hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury were generated. The infarct size, histological changes and apoptosis in heart tissues were evaluated by TTC, HE, and TUNEL staining. CCK-8, flow cytometry and immunofluorescence were employed to assess cell viability, apoptosis and autophagosome-lysosome fusion in H9c2 cells. The associations among SNHG5, LIN28A and BCAT1 mRNA were detected by RNA pull-down, RIP, and RNA fluorescence <i>in situ</i> hybridization (FISH) assays. Western Blot, qRT-PCR and immunohistochemistry were employed to detect the expression of key molecules. Our results revealed that Dex ameliorated myocardial I/R injury and H/R-induced impairments in H9c2 cells by enhancing autophagy. Moreover, Dex led to a rebound of SNHG5 in the heart tissues of I/R rats and H/R-treated H9c2 cells, and functional studies revealed that Dex protected against cardiac impairments through SNHG5-dependent autophagy <i>in vitro</i> and <i>in vivo</i>. Furthermore, SNHG5 alleviated H/R-induced impairments by recruiting LIN28A protein, which was subsequently bound to BCAT1 mRNA and maintained its stability. In conclusion, our findings demonstrated that SNHG5, when upregulated by Dex, alleviated myocardial I/R injury through LIN28A-mediated BCAT1 mRNA stabilization and autophagy enhancement.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1-22"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American journal of Chinese medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0192415X25500442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SNHG5 serves as a key factor in regulating various cancers, and Dexmedetomidine (Dex) protects against myocardial ischemia/reperfusion (I/R) injury. However, the role of SNHG5 in Dex-mediated protection during myocardial I/R remains uninvestigated. In this study, models of rat myocardial I/R injury and hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury were generated. The infarct size, histological changes and apoptosis in heart tissues were evaluated by TTC, HE, and TUNEL staining. CCK-8, flow cytometry and immunofluorescence were employed to assess cell viability, apoptosis and autophagosome-lysosome fusion in H9c2 cells. The associations among SNHG5, LIN28A and BCAT1 mRNA were detected by RNA pull-down, RIP, and RNA fluorescence in situ hybridization (FISH) assays. Western Blot, qRT-PCR and immunohistochemistry were employed to detect the expression of key molecules. Our results revealed that Dex ameliorated myocardial I/R injury and H/R-induced impairments in H9c2 cells by enhancing autophagy. Moreover, Dex led to a rebound of SNHG5 in the heart tissues of I/R rats and H/R-treated H9c2 cells, and functional studies revealed that Dex protected against cardiac impairments through SNHG5-dependent autophagy in vitro and in vivo. Furthermore, SNHG5 alleviated H/R-induced impairments by recruiting LIN28A protein, which was subsequently bound to BCAT1 mRNA and maintained its stability. In conclusion, our findings demonstrated that SNHG5, when upregulated by Dex, alleviated myocardial I/R injury through LIN28A-mediated BCAT1 mRNA stabilization and autophagy enhancement.

右美托咪定上调SNHG5通过lin28a介导的BCAT1 mRNA稳定和自噬增强减轻心肌缺血/再灌注损伤
SNHG5是调节多种癌症的关键因子,右美托咪定(Dexmedetomidine, Dex)对心肌缺血/再灌注(I/R)损伤具有保护作用。然而,在心肌I/R期间SNHG5在dex介导的保护中的作用仍未被研究。本研究建立了大鼠心肌I/R损伤模型和缺氧/再氧化(H/R)诱导心肌细胞损伤模型。采用TTC、HE、TUNEL染色观察心肌梗死后心肌组织的梗死面积、组织学变化及凋亡情况。采用CCK-8、流式细胞术和免疫荧光法检测H9c2细胞的细胞活力、凋亡和自噬体-溶酶体融合情况。采用RNA pull-down、RIP和RNA荧光原位杂交(FISH)检测SNHG5、LIN28A和BCAT1 mRNA的相关性。采用Western Blot、qRT-PCR和免疫组化检测关键分子的表达。我们的研究结果显示,右美托咪唑通过增强自噬来改善心肌I/R损伤和H/R诱导的H9c2细胞损伤。此外,在I/R大鼠心脏组织和H/R处理的H9c2细胞中,Dex导致SNHG5的反弹,功能研究表明,Dex通过体外和体内SNHG5依赖性自噬保护心脏损伤。此外,SNHG5通过募集LIN28A蛋白减轻H/ r诱导的损伤,该蛋白随后与BCAT1 mRNA结合并保持其稳定性。综上所述,我们的研究结果表明,当Dex上调SNHG5时,SNHG5通过lin28a介导的BCAT1 mRNA稳定和自噬增强来减轻心肌I/R损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信