Journal of materials chemistry. B最新文献

筛选
英文 中文
Decellularization of caprine forestomach rumen tissue modified with silver nanowires as an antibacterial skin substitute scaffold in wound care therapeutics. 用银纳米线修饰的山羊森林胃瘤胃组织脱细胞作为伤口护理疗法中的抗菌皮肤替代支架。
Journal of materials chemistry. B Pub Date : 2024-10-30 DOI: 10.1039/d4tb01560f
Athmana P A, Asna Jaleel K I, Sinduja Malarkodi Elangovan, Riza Paul, Naveen Subbaiyan, Parthiban Shanmugam, Gopal Shankar Krishnakumar
{"title":"Decellularization of caprine forestomach rumen tissue modified with silver nanowires as an antibacterial skin substitute scaffold in wound care therapeutics.","authors":"Athmana P A, Asna Jaleel K I, Sinduja Malarkodi Elangovan, Riza Paul, Naveen Subbaiyan, Parthiban Shanmugam, Gopal Shankar Krishnakumar","doi":"10.1039/d4tb01560f","DOIUrl":"https://doi.org/10.1039/d4tb01560f","url":null,"abstract":"<p><p>In this study, caprine forestomach native collagen (CFNC) isolated from rumen tissues is reported for the first time with subsequent surface modifications with varying concentrations of silver nanowires (AgNWs). Accordingly, CFNC/AgNWs scaffolds were prepared to be used as suitable wound healing dressing materials through a sequential isolation and decellularization process, followed by step-wise AgNW surface modification and ultraviolet (UV) crosslinking. The significant outcomes of this research highlight that CFNC/AgNWs scaffolds exhibit a highly porous three-dimensional (3D) network structure with favourable physicochemical characteristics. Also, the comprehensive tensile testing demonstrated that there were changes in mechanical properties based on the AgNW content. The CFNC/AgNWs scaffolds also exhibited strong antibacterial action against <i>E. coli</i> and <i>S. aureus</i> in a dose-dependent manner. The release of Ag<sup>+</sup> ions from CFNC/AgNWs scaffolds exhibited a slow and sustained release pattern over an extended period of time. The cell-biomaterial interaction studies on CFNC/AgNWs scaffolds using L929 fibroblast cells showed dose-dependent and time-dependent toxicity when the concentration exceeded above 1 mg mL<sup>-1</sup>. The cytotoxicity is mainly due to the higher concentration of Ag<sup>+</sup> ions which initiates cell death through lipid peroxidation and causes cell membrane damage. The biocompatibility test results serve as a reference point to select the optimal dosage of AgNWs with balanced antibacterial and biocompatibility properties. Thus, the developed CFNC/AgNWs scaffolds will serve as a versatile wound dressing material similar to other metallic or conjugated reconstituted collagen systems with the added benefit of strong antimicrobial properties, and as a biomimetic xenograft for skin regeneration.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porous helical supramolecular columns self-organized via the fluorophobic effect of a semifluorinated tapered dendron. 通过半氟化锥形树枝状化合物的疏氟效应自组织的多孔螺旋超分子柱。
Journal of materials chemistry. B Pub Date : 2024-10-30 DOI: 10.1039/d4tb01951b
Dipankar Sahoo, Mihai Peterca, Mohammad R Imam, Devendra S Maurya, Virgil Percec
{"title":"Porous helical supramolecular columns self-organized <i>via</i> the fluorophobic effect of a semifluorinated tapered dendron.","authors":"Dipankar Sahoo, Mihai Peterca, Mohammad R Imam, Devendra S Maurya, Virgil Percec","doi":"10.1039/d4tb01951b","DOIUrl":"https://doi.org/10.1039/d4tb01951b","url":null,"abstract":"<p><p>The self-organizable dendron (4-3,4-3,5)12G2X with X = -CO2CH3 and -CH2OH, an already classic dendron, facilitating the formation of a large diversity of columnar hexagonal phases including crystalline, with intracolumnar order, and liquid crystalline, and providing access for the first time to mimics of the transmembrane protein water channel Aquaporin was semifluorinated at eight of the sp<sup>3</sup> hybridized carbons of its alkyl groups to provide (4-3,4-3,5)4F8G2X. The self-organization of (4-3,4-3,5)4F8G2X was analyzed by a combination of oriented fiber intermediate angle X-ray scattering, wide angle X-ray scattering, electron density maps, and reconstructed X-ray diffractograms by emplying molecular models. These experiments demonstrated that fluorophobic effect of (4-3,4-3,5)4F8G2X mediated mostly <i>via</i> the helical confiormation of the fluorinated fragments sharper miocrosegregation of the fluorinated fragments in the most ordered states of the resulting 12<sub>4</sub> helical porous columns. These results support the original model of self-organization of dendrons and provide access to new and simpler synthetic avenues for the construction of mimics of aquaporin channels which are of great interest for cell biology and for the next generation of membranes for water separation and water purification.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-specific spatial profiling of targeted protein expression to characterize the impact of intracortical microelectrode implantation on neuronal health. 细胞特异性靶向蛋白表达空间图谱,描述皮层内微电极植入对神经元健康的影响。
Journal of materials chemistry. B Pub Date : 2024-10-30 DOI: 10.1039/d4tb01628a
Lindsey N Druschel, Niveda M Kasthuri, Sydney S Song, Jaime J Wang, Allison Hess-Dunning, E Ricky Chan, Jeffrey R Capadona
{"title":"Cell-specific spatial profiling of targeted protein expression to characterize the impact of intracortical microelectrode implantation on neuronal health.","authors":"Lindsey N Druschel, Niveda M Kasthuri, Sydney S Song, Jaime J Wang, Allison Hess-Dunning, E Ricky Chan, Jeffrey R Capadona","doi":"10.1039/d4tb01628a","DOIUrl":"10.1039/d4tb01628a","url":null,"abstract":"<p><p>Intracortical microelectrode arrays (MEAs) can record neuronal activity and advance brain-computer interface (BCI) devices. Implantation of the invasive MEA kills local neurons, which has been documented using immunohistochemistry (IHC). Neuronal nuclear protein (NeuN), a protein that lines the nuclei of exclusively neuronal cells, has been used as a marker for neuronal health and survival for decades in neuroscience and neural engineering. NeuN staining is often used to describe the neuronal response to intracortical microelectrode array (MEA) implantation. However, IHC is semiquantitative, relying on intensity readings rather than directly counting expressed proteins. To supplement previous IHC studies, we evaluated the expression of proteins representing different aspects of neuronal structure or function: microtubule-associated protein 2 (MAP2), neurofilament light (NfL), synaptophysin (SYP), myelin basic protein (MBP), and oligodendrocyte transcription factor 2 (OLIG2) following a neural injury caused by intracortical MEA implantation. Together, these five proteins evaluate the cytoskeletal structure, neurotransmitter release, and myelination of neurons. To fully evaluate neuronal health in NeuN-positive (NeuN+) regions, we only quantified protein expression in NeuN+ regions, making this the first-ever cell-specific spatial profiling evaluation of targeted proteins by multiplex immunochemistry following MEA implantation. We performed our protein quantification along with NeuN IHC to compare the results of the two techniques directly. We found that NeuN immunohistochemical analysis does not show the same trends as MAP2, NfL, SYP, MBP, and OLIG2 expression. Further, we found that all five quantified proteins show a decreased expression pattern that aligns more with historic intracortical MEA recording performance.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailored BODIPY-based fluorogenic probes for phosgene detection: a comparative evaluation of recognition sites. 基于 BODIPY 的定制荧光探针用于光气检测:识别位点的比较评估。
Journal of materials chemistry. B Pub Date : 2024-10-30 DOI: 10.1039/d4tb02040e
Suay Dartar, Beraat Umur Kaya, Yanki Öncü Yayak, Ezgi Vural, Mustafa Emrullahoğlu
{"title":"Tailored BODIPY-based fluorogenic probes for phosgene detection: a comparative evaluation of recognition sites.","authors":"Suay Dartar, Beraat Umur Kaya, Yanki Öncü Yayak, Ezgi Vural, Mustafa Emrullahoğlu","doi":"10.1039/d4tb02040e","DOIUrl":"https://doi.org/10.1039/d4tb02040e","url":null,"abstract":"<p><p>We constructed two novel boron-dipyrromethene (BODIPY)-based fluorescent probes, BOPD and BOBA, each equipped with the phosgene specific recognition units <i>o</i>-phenylenediamine (OPD) and <i>o</i>-aminobenzylamine (OBA) at the 2-position of the BODIPY core. BOPD and BOBA represent rare examples of BODIPY-based probes that operate by modulating an intramolecular charge transfer process (ICT), as validated by computational studies. We systematically compared the analytic performance of those recognition units while focusing on selectivity, fluorescence turn-on ratios and response times. Probe BOBA, equipped with OBA as the recognition unit, demonstrated a remarkably low detection limit (<i>i.e.</i>, 1.40 nM) and a rapid response time (<10 s) for triphosgene. By comparison, BOPD, featuring an OPD unit, showed superior selectivity towards triphosgene, with a detection limit of 93 nM and a response time of up to 30 s. A portable sensing platform was developed by loading BOPD onto test strips made of TLC plates, nonwoven materials and small-headed cotton swabs, which were assessed for their effectiveness in detecting phosgene. We additionally performed the first successful application of a fluorescent probe, namely BOPD, for monitoring the accumulation of phosgene in plants.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Ru3+-functionalized-NMOF nanozyme as an inhibitor and disaggregator of β-amyloid aggregates. Ru3+功能化-NMOF纳米酶作为β淀粉样蛋白聚集体的抑制剂和分解剂。
Journal of materials chemistry. B Pub Date : 2024-10-29 DOI: 10.1039/d4tb01313a
Wan-Chun Luo, Li-Na Bao, Yu Zhang, Zi-Tong Zhang, Xi Li, Meng-Meng Pan, Jin-Tao Zhang, Kun Huang, Yu Xu, Li Xu
{"title":"A Ru<sup>3+</sup>-functionalized-NMOF nanozyme as an inhibitor and disaggregator of β-amyloid aggregates.","authors":"Wan-Chun Luo, Li-Na Bao, Yu Zhang, Zi-Tong Zhang, Xi Li, Meng-Meng Pan, Jin-Tao Zhang, Kun Huang, Yu Xu, Li Xu","doi":"10.1039/d4tb01313a","DOIUrl":"https://doi.org/10.1039/d4tb01313a","url":null,"abstract":"<p><p>Alzheimer's disease (AD) heavily impacts human lives and is becoming serious as societies age. Inhibiting and disaggregating β-amyloid aggregates is a possible solution for AD therapy. In this study, a novel type of nanozyme based on Ru<sup>3+</sup>-chelated nanoscale metal organic frameworks (Ru<sup>3+</sup>-NMOFs), displaying strong peroxidase-like activity, was proposed as an inhibitor and disaggregator of β-amyloid aggregates. As a high concentration of hydrogen peroxide is present at the sites of β-amyloid aggregates, Ru<sup>3+</sup>-NMOFs could catalyze the conversion of hydrogen peroxide to hydroxyl radicals. Thus, these hydroxyl radicals would attack the β-amyloid chain, oxidizing it to enhance its hydrophilicity, which results in a decreased hydrophobic interaction and reduced degree of aggregation. Ru<sup>3+</sup>-NMOFs could effectively inhibit as well as disaggregate β-amyloid fibrils both <i>in vitro</i> and <i>in vivo</i>. Additionally, the reduction of the β-amyloid aggregates and the attenuation of reactive oxygen species transfer led to lower levels of inflammatory factors, which could be beneficial in alleviating AD symptoms. In a typical treatment, Ru<sup>3+</sup>-NMOFs could mitigate the paralysis of <i>C. elegans</i> CL2120 and elevate survival rates. This study opens a new avenue for MOF-based nanozymes as potential treatment agents for AD therapy.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced gene transfection ability of sulfonylated low-molecular-weight PEI and its application in anti-tumor treatment. 磺化低分子量聚乙烯醇的基因转染能力增强及其在抗肿瘤治疗中的应用
Journal of materials chemistry. B Pub Date : 2024-10-29 DOI: 10.1039/d4tb01760a
Xiao-Li Tian, Ping Chen, Yue Hu, Lan Zhang, Xiao-Qi Yu, Ji Zhang
{"title":"Enhanced gene transfection ability of sulfonylated low-molecular-weight PEI and its application in anti-tumor treatment.","authors":"Xiao-Li Tian, Ping Chen, Yue Hu, Lan Zhang, Xiao-Qi Yu, Ji Zhang","doi":"10.1039/d4tb01760a","DOIUrl":"https://doi.org/10.1039/d4tb01760a","url":null,"abstract":"<p><p>With the continuous progress of nanotechnology in the field of tumor vaccines, immunotherapy has been regarded as one of the most powerful approaches for cancer treatment. Currently, DNA vaccines are used to efficiently deliver plasmids encoding tumor-associated antigens to antigen-presenting cells (APCs) and enhance the activation of immune cells. In this work, a series of aromatic sulfonyl small-molecule-modified polymers R-P based on low-molecular-weight polyethylenimine (PEI) were prepared, and their structure-activity relationship was studied. Among them, Ns-P with high transfection efficiency and low toxicity was applied to deliver antigen ovalbumin (OVA)-encoded plasmid DNA to APCs for triggering the immune activation of dendritic cells (DCs). It was also found that Ns-P could be used as an immune adjuvant to activate the STING pathway in DCs, integrating innate stimulating activity into the carrier to enhance antitumor immunity. Moreover, the modification of Ns-P/pOVA complexes with oxidized mannan could not only improve the biocompatibility of the complex, but also enhance the uptake of DCs, further inducing OVA antigen presentation and immune stimulation. <i>In vivo</i> antitumor assays indicated that Ns-P/pOVA/Man immunization could inhibit the growth of OVA-expressing E.G7 tumors in C57BL/6 mice. These results demonstrated that Ns-P/pOVA/Man is promising for gene delivery and immunotherapy application.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of biomineralization morphology by phosphorylated collagen peptides: insights into osteogenesis imperfecta pathophysiology. 磷酸化胶原蛋白肽对生物矿化形态的调节:对成骨不全病病理生理学的启示。
Journal of materials chemistry. B Pub Date : 2024-10-29 DOI: 10.1039/d4tb00873a
Linge Nian, Wenhua Li, Xinyu Tian, Guochen Wei, Qingfeng Wu, Jianxi Xiao
{"title":"Modulation of biomineralization morphology by phosphorylated collagen peptides: insights into osteogenesis imperfecta pathophysiology.","authors":"Linge Nian, Wenhua Li, Xinyu Tian, Guochen Wei, Qingfeng Wu, Jianxi Xiao","doi":"10.1039/d4tb00873a","DOIUrl":"https://doi.org/10.1039/d4tb00873a","url":null,"abstract":"<p><p>Osteogenesis imperfecta (OI) is a hereditary skeletal disorder characterized by bone fragility and deformities, primarily attributed to defects in type I collagen, the most abundant structural protein in humans. Multiple phosphorylation sites have been detected within collagen, suggesting that phosphorylation may influence mineralization processes, thereby impacting the development of OI. In this study, we investigated the modulation of biomineralization morphology by phosphorylated collagen peptides mimicking Gly-Ser mutations in osteogenesis imperfecta. A series of collagen peptide sequences, including GPO<sub>13</sub>S, GPO<sub>13</sub>pS, GPO<sub>12</sub>S, GPO<sub>12</sub>pS, GPO<sub>11</sub>S, and GPO<sub>11</sub>pS, were synthesized to explore the role of phosphorylation in peptide stability and its templating effect on biomineralization. The CD results indicated that the phosphorylation of Gly-pSer mutants reduces the stability of collagen peptides. SEM images revealed that phosphorylated peptides acted as templates, guiding the morphology of calcium carbonate into either olive-like or spherical structures, depending on their conformational state of the peptides. Non-phosphorylated peptides maintained a calcite crystal structure. The XRD patterns predominantly exhibited peaks associated with calcite and vaterite for GPO<sub>13</sub>pS-CaCO<sub>3</sub>, GPO<sub>12</sub>pS-CaCO<sub>3</sub>, and GPO<sub>11</sub>pS-CaCO<sub>3</sub>, and peaks associated with calcite for GPO<sub>13</sub>S-CaCO<sub>3</sub>, GPO<sub>12</sub>S-CaCO<sub>3</sub>, and GPO<sub>11</sub>S-CaCO<sub>3</sub>, indicating a transformation of mesocrystals influenced by peptide phosphorylation. Our findings elucidate the crucial role of phosphorylated collagen peptides in mediating biomineralization morphology and polymorph selection, offering insights into the complex pathophysiology of OI.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A photocrosslinkable and anti-inflammatory hydrogel of loxoprofen-conjugated chitosan methacrylate. 洛索洛芬共轭壳聚糖甲基丙烯酸酯光交联消炎水凝胶。
Journal of materials chemistry. B Pub Date : 2024-10-29 DOI: 10.1039/d4tb01956c
Xiangheng Guan, Xin-Gang Wang, Binbin Sun, Hongsheng Wang, Mohamed El-Newehy, Meera Moydeen Abdulhameed, Xiumei Mo, Bei Feng, Jinglei Wu
{"title":"A photocrosslinkable and anti-inflammatory hydrogel of loxoprofen-conjugated chitosan methacrylate.","authors":"Xiangheng Guan, Xin-Gang Wang, Binbin Sun, Hongsheng Wang, Mohamed El-Newehy, Meera Moydeen Abdulhameed, Xiumei Mo, Bei Feng, Jinglei Wu","doi":"10.1039/d4tb01956c","DOIUrl":"https://doi.org/10.1039/d4tb01956c","url":null,"abstract":"<p><p>Polymer-drug conjugates are widely used for drug delivery. Herein, we report an injectable hydrogel for local delivery of nonsteroidal anti-inflammatory drugs (NSAIDs) using chitosan (CS) as a carrier polymer. Loxoprofen (LOX) was conjugated to the backbone of CS <i>via</i> carbodiimide chemistry to obtain the LOX-CS conjugate. This conjugation transformed the water-insoluble unmodified CS into the water-soluble LOX-CS conjugate. In particular, the LOX-CS conjugate did not precipitate at pH 7, allowing smooth subsequent chemical modification with methacrylic anhydride (MA) to synthesize LOX-CS methacrylate (LOX-CS-MA) with significantly higher methacrylation substitution. The LOX-CS-MA was capable of <i>in situ</i> gel formation under visible light irradiation in the presence of a benzoin-2,4,6-trimethylbenzoylphosphinate lithium (LAP) photoinitiator. Our results show that the LOX-CS-MA hydrogel exhibited good cytocompatibility and blood compatibility. It promoted M2 polarization, inhibited pro-inflammatory gene expression, and upregulated anti-inflammatory gene expression of macrophages. Furthermore, the LOX-CS-MA hydrogel significantly reduced reactive oxygen species (ROS) and nitric oxide (NO) produced by lipopolysaccharide (LPS)-stimulated macrophages. A subcutaneous implanted LOX-CS-MA hydrogel in a rat model revealed significantly reduced inflammatory cell density, decreased cell infiltration, and a much thinner fibrous capsule compared to the CS methacrylate (CS-MA) hydrogel, thus markedly alleviating the inflammatory response. This study highlights the feasibility of CS-drug conjugates in preparing CS-based methacrylate hydrogels for sustained drug release.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a small molecule-based two-photon photosensitizer for targeting cancer cells. 开发基于小分子的双光子光敏剂,用于靶向癌细胞。
Journal of materials chemistry. B Pub Date : 2024-10-29 DOI: 10.1039/d4tb01706d
Dong Joon Lee, Yu Cao, Vinayak Juvekar, Sauraj, Choong-Kyun Noh, Sung Jae Shin, Zhihong Liu, Hwan Myung Kim
{"title":"Development of a small molecule-based two-photon photosensitizer for targeting cancer cells.","authors":"Dong Joon Lee, Yu Cao, Vinayak Juvekar, Sauraj, Choong-Kyun Noh, Sung Jae Shin, Zhihong Liu, Hwan Myung Kim","doi":"10.1039/d4tb01706d","DOIUrl":"10.1039/d4tb01706d","url":null,"abstract":"<p><p>Photodynamic therapy (PDT) employing two-photon (TP) excitation is increasingly recognized to induce cell damage selectively in targeted areas, underscoring the importance of developing TP photosensitizers (TP-PSs). In this study, we developed BSe-B, a novel PS that combines a selenium containing dye with biotin, a cancer-selective ligand, and is optimized for TP excitation. BSe-B demonstrated enhanced cancer selectivity, efficient generation of type-I based reactive oxygen species (ROS), low dark toxicity, and excellent cell-staining capability. Evaluation across diverse cell lines (HeLa, A549, OVCAR-3, WI-38, and L-929) demonstrated that BSe-B differentiated and targeted cancer cells while sparing normal cells. BSe-B displayed excellent <i>in vivo</i> biocompatibility. In cancer models such as three-dimensional spheroids and actual colon cancer tissues, BSe-B selectively induced ROS production and cell death under TP irradiation, demonstrating precise spatial control. These findings highlight the potential of BSe-B for imaging-guided PDT and its capability for micro treatment within tissues. Thus, BSe-B demonstrates robust TP-PDT capabilities, making it a promising dual-purpose tool for cancer diagnosis and treatment.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of citric acid-based biomaterials for biomedical applications. 开发用于生物医学应用的柠檬酸基生物材料。
Journal of materials chemistry. B Pub Date : 2024-10-28 DOI: 10.1039/d4tb01666a
Shihao Zhang, Cailin Liu, Meng Su, Dong Zhou, Ziwei Tao, Shiyong Wu, Lan Xiao, Yulin Li
{"title":"Development of citric acid-based biomaterials for biomedical applications.","authors":"Shihao Zhang, Cailin Liu, Meng Su, Dong Zhou, Ziwei Tao, Shiyong Wu, Lan Xiao, Yulin Li","doi":"10.1039/d4tb01666a","DOIUrl":"https://doi.org/10.1039/d4tb01666a","url":null,"abstract":"<p><p>The development of bioactive materials with controllable preparation is of great significance for biomedical engineering. Citric acid-based biomaterials are one of the few bioactive materials with many advantages such as simple synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, controllable biodegradability, and further functionalization. In this paper, we review the development of multifunctional citrate-based biomaterials for biomedical applications, and summarize their multifunctional properties in terms of physical, chemical, and biological aspects, and finally the applications of citrate-based biomaterials in biomedical engineering, including bone tissue engineering, skin tissue engineering, drug/cell delivery, vascular and neural tissue engineering, and bioimaging.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信