Bramantyo Wikantyoso, Anugerah Fajar, Didi Tarmadi, Setiawan Khoirul Himmi, Sulaeman Yusuf
{"title":"The morphological diagnosis of 2 economically important subterranean termites in Western Indonesia, Coptotermes curvignathus and Coptotermes gestroi (Blattodea, Rhinotermitidae).","authors":"Bramantyo Wikantyoso, Anugerah Fajar, Didi Tarmadi, Setiawan Khoirul Himmi, Sulaeman Yusuf","doi":"10.1093/jee/toae147","DOIUrl":"10.1093/jee/toae147","url":null,"abstract":"<p><p>In Indonesia, the control of Coptotermes curvignathus populations as living tree termite pests has been carried out since the early 20th century. Recently, C. curvignathus has been considered the main termite pest and designated as the only species model for wood and wood products resistance tests against subterranean termite attack testing protocol in the Indonesian National Standard (SNI). However, the species distribution range of C. curvignathus has been long questioned as Coptotermes gestroi is commonly reported as a species found in urban areas of Southeast Asian region, particularly in Indonesia. One of the reasons for the species distribution discrepancies is the lack of morphological markers to distinguish both species in the field. Thus, limiting the field inspection effectiveness in termite pest management in Indonesia. This study reexamined and clarified the morphological differences between C. curvignathus and C. gestroi, based on soldier caste. The head shape, mandible shape, and distribution of genal setae on the ventro-anterior head part and pronotum marked the difference between the 2 species. These current results support previous findings of C. curvignathus as the forest dweller while clarifying C. gestroi as the common urban dweller in Indonesia. The putative benefit of morphological features related to the head, mandible, and setae distribution to the defensive adaptation in their common habitat was discussed. Ultimately, the inclusion of C. gestroi into the Indonesian National Standard (SNI) as an alternative species for efficacy tests against subterranean termites is highly recommended.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"2019-2029"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dominant strain shift in the invasive fall armyworm (Lepidoptera: Noctuidae) populations in Thailand as inferred from mitochondrial COI and nuclear Tpi genes.","authors":"Chitsanuphong Phanthian, Nontivich Tandavanitj, Chatchawan Chaisuekul","doi":"10.1093/jee/toae177","DOIUrl":"10.1093/jee/toae177","url":null,"abstract":"<p><p>The fall armyworm, Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae), is a significant global pest, that exhibits 2 discernible strains, corn strain (CS) and rice strain (RS). After initial detection in the eastern hemisphere in 2016, the dominant strain was identified as RS based only on cytochrome C oxidase subunit I (COI) mitochondrial gene from limited samples from various countries, including Thailand. This study aimed to assess strain and haplotype variation in the S. frugiperda populations in Thailand using both mitochondrial COI and nuclear triosephosphate isomerase (Tpi) genes. Analyses of COI sequences (n = 105) revealed 2 predominant haplotypes, COICSh4 (82.86%) and COIRSh1 (17.14%), and the analyses of Tpi sequences (n = 99) revealed 6 haplotypes, with TpiCa1a (53.53%) being the most prevalent. Of the 98 caterpillar samples, the majority exhibited true CS (83.67%) for both genes. Meanwhile, interstrain hybrids, indicated by gene discordance, accounted for the minority (16.33%). Interestingly, despite the initial dominance of RS during the 2018 outbreak, the current study identified CS as the prevalent strain across all localities in Thailand. These findings suggested a shift in S. frugiperda dynamics in Thailand that was possibly influenced by factors, such as competitive exclusion principle, pesticide usage in rice cultivation, and preferences for corn over rice. Our study suggests a need to reexamine the previous reports of rice-strain dominance in various countries in the eastern hemisphere after the initial invasion.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"2100-2112"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eugenia Fezza, Joe M Roberts, Toby J A Bruce, Lael E Walsh, Michael T Gaffney, Tom W Pope
{"title":"'The Garlic Gambit': an alternative strategy for controlling vine weevil (Otiorhynchus sulcatus F.; Coleoptera: Curculionidae).","authors":"Eugenia Fezza, Joe M Roberts, Toby J A Bruce, Lael E Walsh, Michael T Gaffney, Tom W Pope","doi":"10.1093/jee/toae175","DOIUrl":"10.1093/jee/toae175","url":null,"abstract":"<p><p>Plant protection products derived from plant material are proposed to be a sustainable alternative to conventional synthetic chemical pesticides. This study determines the efficacy of a commercially available bioinsecticide based on garlic (Allium sativum L.; Asparagales: Amaryllidaceae) extract against vine weevil (Otiorhynchus sulcatus F.; Coleoptera: Curculionidae) eggs and larvae in contact, fumigation and a combination of contact and fumigation bioassays under laboratory conditions. Results showed that garlic significantly reduced egg hatch rate compared to the control group when applied as a fumigant. Similarly, the egg hatch rate was reduced compared to the control group when garlic was applied as combined contact and fumigant applications. No effect was observed when the garlic product was applied as a contact application. The bioinsecticide significantly reduced larval survival when either contact or fumigant applications were used. A combined contact and fumigant effect was shown also when vine weevil eggs were exposed to the bioinsecticide for 30 days in plastic containers containing growing media. The number of larvae recovered after this period was significantly reduced compared to the control group. This study demonstrates the potential of garlic-based bioinsecticides, such as Pitcher GR, for vine weevil control. Further studies are, however, needed to determine the efficacy of such bioinsecticides under field conditions and investigate how these products can be most effectively used as a part of a wider vine weevil integrated pest management program.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"1968-1976"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabita Ranabhat, Alison R Gerken, Deanna S Scheff, Kun Yan Zhu, William R Morrison
{"title":"Modeling long-term, stage-structured dynamics of Tribolium castaneum (Coleoptera: Tenebrionidae) at food facilities with and without two types of long-lasting insecticide-incorporated netting.","authors":"Sabita Ranabhat, Alison R Gerken, Deanna S Scheff, Kun Yan Zhu, William R Morrison","doi":"10.1093/jee/toae185","DOIUrl":"10.1093/jee/toae185","url":null,"abstract":"<p><p>The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), is a cosmopolitan and destructive external-infesting pest at many food facilities. The use of deltamethrin- and α-cypermethrin-incorporated long-lasting insecticide-incorporated netting (LLIN) has shown incredible promise for the management of stored product insects. However, it is unknown how LLIN deployed within food facilities may affect the long-term population dynamics of T. castaneum compared to populations where no LLIN is present. Exposure to LLIN has been shown to affect mortality in the current generation and decrease progeny production in the subsequent generation. Thus, we modeled the long-term population dynamics of T. castaneum at food facilities over 15 generations by incorporating realistic estimates for mortality and progeny reduction after contact with LLIN compared to baseline growth by the species. We parameterized the model with estimates from the literature and used a four-stage structured population (eggs, larvae, pupae, and adults). The model was implemented using the package popbio in R. Our models suggest that deploying LLIN led to significant population reductions based on the estimates of mortality and progeny reduction from prior work, whereas the baseline model exhibited exponential population growth. In addition, there were differences in the frequencies of each life stage under each scenario modeled. As a result, it appears deploying LLIN may contribute to the local extirpation of T. castaneum within as few as 15 generations. Our work contributes to a growing literature about the effectiveness of incorporating LLIN into existing pest management programs for managing stored product insects in food facilities.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"2168-2180"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of artificial sugar supplement on the lifespan and learning memory ability of honey bee (Apis cerana) worker bee offspring.","authors":"Yueyang Hu, Fangming Lu, Heyan Yang, Qizhong Pan, Xiaobo Wu","doi":"10.1093/jee/toae176","DOIUrl":"10.1093/jee/toae176","url":null,"abstract":"<p><p>Honeybees maintain their growth and reproduction mainly by collecting nutrients from nectar-source plants. Apis cerana, a unique species of honeybee in China, is capable of sporadically collecting nectar. In traditional beekeeping, sugar syrup or a honey-water solution must be artificially fed to bees to supplement their diet during rainy weather or nectar-deficient periods. In this study, 2 groups of honeybee colonies were each fed sugar syrup or a honey-water solution, and a third group consisting of colonies that were allowed to naturally forage without any dietary supplement was used as the control. The effects of the 2 sugar sources on A. cerana worker bee offspring were compared. The results showed that the sugar source affected the lifespan and learning memory of the worker bee offspring. The lifespan, learning memory ability, and expression of related genes in the sugar syrup group were significantly lower than those in the honey-water solution and natural nectar foraging groups (P < 0.05). A honey-water solution supplement was more beneficial to the healthy development of worker bee offspring than a sugar syrup supplement when the colonies lacked dietary resources. These findings provide a theoretical basis that can guide beekeepers in choosing the appropriate dietary supplements for honeybees.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"1723-1728"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Death zone minimizes the impact of fipronil-treated soils on subterranean termite colonies by negating transfer effects.","authors":"Thomas Chouvenc","doi":"10.1093/jee/toae150","DOIUrl":"10.1093/jee/toae150","url":null,"abstract":"<p><p>The use of nonrepellent liquid termiticides against subterranean termites has long relied on the assumption that foraging termites in soils could transfer toxicants to nestmates to achieve population control. However, their dose-dependent lethal time can lead to rapid termite mortality in proximity of the treatment, triggering secondary repellency. The current study characterizes the dynamic nature of the \"death zone,\" i.e., the area adjacent to soil termiticides that termites would avoid owing the accumulation of cadavers. Using whole subterranean termite laboratory colonies of Coptotermes gestroi (Wasmann) with 3 × 15 m foraging distances, fipronil was implemented at 1.5 m, 7.5 m, or 12.5 m away from colony central nests, emulating a corrective action against an termite structural infestation. For treatments at 7.5 m and 12.5 m, the death zone stabilized at an average of ~2.56 m away from the treatment after 40 d post-treatment, and colonies suffered as little as 1.5% mortality by 200 d post-treatment. Colonies located 1.5 m away from the treatment minimized the death zone to ~1.1 m and suffered as little as 23.5% mortality. Mortality only occurred within the first few days of treatment from initial exposure, as the rapid emergence of the death zone negated further transfer effects among nestmates over time. In some cases, foraging termites were trapped within the infested structure. While technically nonrepellent, fipronil becomes functionally repellent from the rapid mortality onset near the treatment. Even if diligently implemented to successfully protect structures, surrounding termite colonies are minimally impacted by fipronil soil treatments.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"2030-2043"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andressa Graebin, Karina D Amaral, Davi C Lira, Lara J Collares, Rodrigo C Bernardes, Leonardo M Turchen, Terezinha Maria C Della-Lucia, Raul Narciso C Guedes
{"title":"Nasturtium leaf compounds, diphenyl disulfide and lyral, against Atta sexdens (Hymenoptera: Formicidae) and their symbiotic fungi.","authors":"Andressa Graebin, Karina D Amaral, Davi C Lira, Lara J Collares, Rodrigo C Bernardes, Leonardo M Turchen, Terezinha Maria C Della-Lucia, Raul Narciso C Guedes","doi":"10.1093/jee/toae154","DOIUrl":"10.1093/jee/toae154","url":null,"abstract":"<p><p>Social insect pests, particularly leaf-cutting ants, present a considerable challenge in terms of control. Leaf-cutting ants are significant agricultural, forestry, and pasture pests, and understanding their behavior and defense mechanisms is essential for managing their colonies effectively. While toxic ant baits are a primary control method, the limited availability of effective insecticides and concerns over their hazardous nature has spurred the search for alternative solutions, particularly natural compounds, which aligns with the goals of forest certification groups. In the light of previous evidence demonstrating the efficacy of nasturtium leaves (Tropaeolum majus L. (Brassicales: Tropaeolaceae)) in suppressing leaf-cutting ant colonies, this study investigates 2 active components of nasturtium leaf extracts: diphenyl disulfide and lyral. We tested their impact on Atta sexdens (L.) (Hymenoptera: Formicidae), the most prevalent leaf-cutter ant species in Brazil, and their symbiotic fungus, Leucoagaricus gongylophorus (Möller) Singer (Agaricales: Agaricaceae). We conducted experiments with increasing concentrations of diphenyl disulfide and lyral, assessing their effects on the symbiotic fungus and on forager workers and gardeners of A. sexdens colonies. Our findings revealed no fungicidal activity, and ant mortality was minimal in both topical and ingestion bioassays with the exception of gardeners topically exposed to diphenyl sulfide. Furthermore, the compounds did not affect leaf ingestion, but diphenyl disulfide did increase interactions among foragers. These results suggest that neither diphenyl disulfide nor lyral are the primary contributors to the suppression of leaf-cutting ant colonies by nasturtium leaves. However, they may enhance the formicidal activity of other compounds present in nasturtium leaves.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"1703-1711"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New okra genotypes for the management of aphids (Hemiptera: Aphididae) in the diverse ecological landscapes of Central Africa.","authors":"Albert Fomumbod Abang, Srinivasan Ramasamy, Rachid Hanna, Sevillor Kekeunou, Apollin Fotso Kuate, Abdou Tenkouano, Komi Kouma Mokpokpo Fiaboe, Charles-Félix Bilong Bilong","doi":"10.1093/jee/toae165","DOIUrl":"10.1093/jee/toae165","url":null,"abstract":"<p><p>Various aphid species, including Aphis gossypii Glover (Hemiptera: Aphididae), are considered important pests of okra and other vegetables. Previous studies under 1 environment in Cameroon, Central Africa, had found multiple okra genotypes with resistance to A. gossypii. However, the stability and yield performance of the \"resistant\" genotypes across different environments were unknown. Ten previously identified aphid-resistant okra genotypes along with 1 commercial variety and a local landrace (specific to a given location) were compared during 2 seasons in replicated trials in 4 agro-ecological zones of Cameroon that also represent large areas of Central Africa. Aphid populations and okra yield parameters were evaluated. Breeding values were predicted using a linear mixed model for all data, and genotypes by location interactions were identified. The area under the infestation pressure curve (AUIPC) was calculated using aphid count data and subjected to resistance analysis. The Local-the most susceptible with the highest breeding value (+2.33)-and VI060794-one of the moderately resistant-genotypes had the highest yield per hectare. The only resistant genotype VI036213 had the lowest breeding value (-2.20). Genotype × location interactions were significant for yield, pod width, and plant height, while location variance was significant for all parameters evaluated. When considering that higher aphid densities could lead to greater pesticide use and, therefore higher production and environmental costs, the high-yielding VI060794-with moderate aphid resistance across multiple environments-presents an alternative or substitute for local landraces across multiple agro-ecologies of Cameroon and (by extension) Central Africa.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"2123-2134"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficacy of plant-based products and nonconventional pesticides for the management of tropical bed bug.","authors":"Dita Meisyara, Ikhsan Guswenrivo, G Veera Singham","doi":"10.1093/jee/toae179","DOIUrl":"10.1093/jee/toae179","url":null,"abstract":"<p><p>Insecticide resistance is widespread in global bed bug populations. Both common bed bugs and tropical bed bugs are pyrethroid-resistant among most field populations. Plant-based products and nonconventional pesticides offer minimal-risk strategies for managing bed bug resistance, but this strategy has yet to be formally evaluated in Cimex hemipterus (F.) (Hemiptera: Cimicidae). Here, several commercial plant-based formulations (Cedarcide, EcoRaider (also known as EcoVenger), EcoSMART, and Bio-D), a novel product, Provecta, and a pyrethroid insecticide, Pesguard FG161 were tested against pyrethroid-susceptible and resistant strains of C. hemipterus using direct spray, residual exposure, and egg dipping assays. Direct spray treatments outperform residual applications against all tested bed bug strains. Cedarcide exhibits the highest consistency in eliminating bed bugs, followed by EcoRaider, EcoSMART, and Provecta that outperform Bio-D and Pesguard FG161. In comparison to Pesguard FG161, all plant-based insecticide products and Provecta showed higher efficacy against pyrethroid-resistant strains. Although effective, product efficacy varies in terms of speed. Cedarcide kills all bed bugs within 1 min after spraying; however, other products can take up to 9 days to achieve 100% mortality. The efficacy of all products was reduced when evaluated on fabric surface (42%-65% mortality). Cedarcide and EcoRaider reduced egg hatchability by 37%-73% and 47%-70%, respectively. This study suggests that certain plant-based insecticides and an unconventional insecticide can serve as alternative direct spray treatments for managing tropical bed bugs, though their residual effects are limited.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"2070-2080"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sydney A Bird, Nathaniel S Pope, Carley M McGrady, Shelby J Fleischer, Margarita M López-Uribe
{"title":"Mating frequency estimation and its importance for colony abundance analyses in eusocial pollinators: a case study of Bombus impatiens (Hymenoptera: Apidae).","authors":"Sydney A Bird, Nathaniel S Pope, Carley M McGrady, Shelby J Fleischer, Margarita M López-Uribe","doi":"10.1093/jee/toae178","DOIUrl":"10.1093/jee/toae178","url":null,"abstract":"<p><p>The genus Bombus (bumble bees) includes approximately 265 species, many of which are in decline in North America and Europe. To estimate colony abundance of bumble bees in natural and agricultural habitats, sibship relationships are often reconstructed from genetic data with the assumption that colonies have 1 monandrous queen. However, some species such as the North American common eastern bumble bee (Bombus impatiens Cresson) can display low levels of polyandry, which may bias estimates of colony abundance based on monandrous sibship reconstructions. To accurately quantify rates of polyandry in wild and commercially mated queens of this species, we empirically estimated mating frequencies using a novel statistical model and genotypes from 730 bees. To genotype individuals, we used a highly polymorphic set of microsatellites on colonies established from 20 wild-caught gynes and 10 commercial colonies. We found multiple fathers in 3 of the wild colonies and 3 of the commercial colonies. This resulted in average effective mating frequencies of 1.075 ± 0.18 and 1.154 ± 0.25 for wild and commercial colonies, respectively. These findings agree with previous reports of low rates of polyandry for B. impatiens. Using a large empirical dataset, we demonstrate that assuming monandry for colony abundance estimation in species that violate this assumption results in an overestimation of the number of colonies. Our results emphasize the importance of studying mating frequencies in social species of conservation concern and economic importance for the accuracy of colony abundance estimation and for understanding their ecology and sociobiology.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"1712-1722"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141977511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}