ImmunoHorizons最新文献

筛选
英文 中文
IL-10 Neutralization Attenuates Mast Cell Responses in a Murine Model of Experimental Food Allergy. IL-10 中和可减轻实验性食物过敏小鼠模型中的肥大细胞反应
ImmunoHorizons Pub Date : 2024-06-01 DOI: 10.4049/immunohorizons.2400002
Dylan Krajewski, Saurav Ranjitkar, Caitlin Tedeschi, Nicole Maldonado Perez, Nathan Jordan, Mohamed Mire, Sallie S Schneider, Clinton B Mathias
{"title":"IL-10 Neutralization Attenuates Mast Cell Responses in a Murine Model of Experimental Food Allergy.","authors":"Dylan Krajewski, Saurav Ranjitkar, Caitlin Tedeschi, Nicole Maldonado Perez, Nathan Jordan, Mohamed Mire, Sallie S Schneider, Clinton B Mathias","doi":"10.4049/immunohorizons.2400002","DOIUrl":"10.4049/immunohorizons.2400002","url":null,"abstract":"<p><p>IgE-mediated mast cell (MC) activation is a critical component of allergic responses to oral Ags. Several T cell-derived cytokines have been shown to promote MC reactivity, and we recently demonstrated a critical role for the cytokine IL-10 in mediating MC responses during food allergy. In this study, we further validate the role of IL-10 using Ab-mediated IL-10 depletion. IL-10 neutralization significantly attenuated MC responses, leading to decreased MC accumulation and activation, as well as inhibition of MC-mediated symptoms such as allergic diarrhea. This was accompanied by decreased Th2 cytokine gene expression, attenuated systemic T cell responses, and fewer CD4 T cells, B cells, and MCs in the spleen. Our data further confirm the role of IL-10 in driving MC responses and suggest that IL-10-responsive MCs may constitute an important player in allergic responses.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"8 6","pages":"431-441"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220741/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sialic Acid-Siglec-E Interactions Regulate the Response of Neonatal Macrophages to Group B Streptococcus. Sialic酸-Siglec-E相互作用调节新生儿巨噬细胞对B群链球菌的反应
ImmunoHorizons Pub Date : 2024-05-01 DOI: 10.4049/immunohorizons.2300076
Sean J Lund, Pamela G B Del Rosario, Asami Honda, Kaitlin J Caoili, Marten A Hoeksema, Victor Nizet, Kathryn A Patras, Lawrence S Prince
{"title":"Sialic Acid-Siglec-E Interactions Regulate the Response of Neonatal Macrophages to Group B Streptococcus.","authors":"Sean J Lund, Pamela G B Del Rosario, Asami Honda, Kaitlin J Caoili, Marten A Hoeksema, Victor Nizet, Kathryn A Patras, Lawrence S Prince","doi":"10.4049/immunohorizons.2300076","DOIUrl":"10.4049/immunohorizons.2300076","url":null,"abstract":"<p><p>The mammalian Siglec receptor sialoadhesin (Siglec1, CD169) confers innate immunity against the encapsulated pathogen group B Streptococcus (GBS). Newborn lung macrophages have lower expression levels of sialoadhesin at birth compared with the postnatal period, increasing their susceptibility to GBS infection. In this study, we investigate the mechanisms regulating sialoadhesin expression in the newborn mouse lung. In both neonatal and adult mice, GBS lung infection reduced Siglec1 expression, potentially delaying acquisition of immunity in neonates. Suppression of Siglec1 expression required interactions between sialic acid on the GBS capsule and the inhibitory host receptor Siglec-E. The Siglec1 gene contains multiple STAT binding motifs, which could regulate expression of sialoadhesin downstream of innate immune signals. Although GBS infection reduced STAT1 expression in the lungs of wild-type newborn mice, we observed increased numbers of STAT1+ cells in Siglece-/- lungs. To test if innate immune activation could increase sialoadhesin at birth, we first demonstrated that treatment of neonatal lung macrophages ex vivo with inflammatory activators increased sialoadhesin expression. However, overcoming the low sialoadhesin expression at birth using in vivo prenatal exposures or treatments with inflammatory stimuli were not successful. The suppression of sialoadhesin expression by GBS-Siglec-E engagement may therefore contribute to disease pathogenesis in newborns and represent a challenging but potentially appealing therapeutic opportunity to augment immunity at birth.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"8 5","pages":"384-396"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150127/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Basophil-Derived IL-4 and IL-13 Protect Intestinal Barrier Integrity and Control Bacterial Translocation during Malaria. 嗜碱性粒细胞分泌的IL-4和IL-13在疟疾期间保护肠屏障完整性并控制细菌转运
ImmunoHorizons Pub Date : 2024-05-01 DOI: 10.4049/immunohorizons.2300084
Nora Céspedes, Abigail M Fellows, Erinn L Donnelly, Hannah L Kaylor, Taylor A Coles, Ryan Wild, Megan Dobson, Joseph Schauer, Judy Van de Water, Shirley Luckhart
{"title":"Basophil-Derived IL-4 and IL-13 Protect Intestinal Barrier Integrity and Control Bacterial Translocation during Malaria.","authors":"Nora Céspedes, Abigail M Fellows, Erinn L Donnelly, Hannah L Kaylor, Taylor A Coles, Ryan Wild, Megan Dobson, Joseph Schauer, Judy Van de Water, Shirley Luckhart","doi":"10.4049/immunohorizons.2300084","DOIUrl":"10.4049/immunohorizons.2300084","url":null,"abstract":"<p><p>Our previous work demonstrated that basophils regulate a suite of malaria phenotypes, including intestinal mastocytosis and permeability, the immune response to infection, gametocytemia, and parasite transmission to the malaria mosquito Anopheles stephensi. Given that activated basophils are primary sources of the regulatory cytokines IL-4 and IL-13, we sought to examine the contributions of these mediators to basophil-dependent phenotypes in malaria. We generated mice with basophils depleted for IL-4 and IL-13 (baso IL-4/IL-13 (-)) and genotype controls (baso IL-4/IL-13 (+)) by crossing mcpt8-Cre and Il4/Il13fl/fl mice and infected them with Plasmodium yoelii yoelii 17XNL. Conditional deletion was associated with ileal mastocytosis and mast cell (MC) activation, increased intestinal permeability, and increased bacterial 16S levels in blood, but it had no effect on neutrophil activation, parasitemia, or transmission to A. stephensi. Increased intestinal permeability in baso IL-4/IL-13 (-) mice was correlated with elevated plasma eotaxin (CCL11), a potent eosinophil chemoattractant, and increased ileal MCs, proinflammatory IL-17A, and the chemokines MIP-1α (CCL3) and MIP-1β (CCL4). Blood bacterial 16S copies were positively but weakly correlated with plasma proinflammatory cytokines IFN-γ and IL-12p40, suggesting that baso IL-4/IL-13 (-) mice failed to control bacterial translocation into the blood during malaria infection. These observations suggest that basophil-derived IL-4 and IL-13 do not contribute to basophil-dependent regulation of parasite transmission, but these cytokines do orchestrate protection of intestinal barrier integrity after P. yoelii infection. Specifically, basophil-dependent IL-4/IL-13 control MC activation and prevent infection-induced intestinal barrier damage and bacteremia, perhaps via regulation of eosinophils, macrophages, and Th17-mediated inflammation.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"8 5","pages":"371-383"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150129/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of NLRP3 Inflammasomes in Monocyte and Microglial Recruitments in Choroidal Neovascularization. NLRP3 炎症体在脉络膜新生血管中单核细胞和小胶质细胞招募中的作用
ImmunoHorizons Pub Date : 2024-05-01 DOI: 10.4049/immunohorizons.2400025
Blake W Dieckmann, Marcell E Paguaga, Gary W McCollum, John S Penn, Md Imam Uddin
{"title":"Role of NLRP3 Inflammasomes in Monocyte and Microglial Recruitments in Choroidal Neovascularization.","authors":"Blake W Dieckmann, Marcell E Paguaga, Gary W McCollum, John S Penn, Md Imam Uddin","doi":"10.4049/immunohorizons.2400025","DOIUrl":"10.4049/immunohorizons.2400025","url":null,"abstract":"<p><p>Although the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice and immunostaining techniques to confirm localization of NLRP3 inflammasomes in the laser-induced CNV (LCNV) lesions. Confocal microscopy was used to image and quantify LCNV volumes. MCC950 was used as NLRP3 inhibitor. ELISA and quantitative RT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1β protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that red fluorescent protein (RFP)-positive monocyte-derived macrophages and GFP-positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP-positive macrophages, Cx3cr1GFP-positive microglia, and other cells, resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice showed significantly increased lesion size compared with age-matched controls. Inhibition of NLRP3 resulted in decreased IL-1β mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1β.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"8 5","pages":"363-370"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141077415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IL-12 Mediates T-bet-Expressing Myeloid Cell-Dependent Host Resistance against Toxoplasma gondii. IL-12介导T-bet表达的髓样细胞依赖宿主对弓形虫的抵抗力
ImmunoHorizons Pub Date : 2024-04-01 DOI: 10.4049/immunohorizons.2400029
Madison L Schanz, Abigail M Bitters, Kamryn E Zadeii, Dana Joulani, Angela K Chamberlain, Américo H López-Yglesias
{"title":"IL-12 Mediates T-bet-Expressing Myeloid Cell-Dependent Host Resistance against Toxoplasma gondii.","authors":"Madison L Schanz, Abigail M Bitters, Kamryn E Zadeii, Dana Joulani, Angela K Chamberlain, Américo H López-Yglesias","doi":"10.4049/immunohorizons.2400029","DOIUrl":"10.4049/immunohorizons.2400029","url":null,"abstract":"<p><p>To defend against intracellular pathogens such as Toxoplasma gondii, the host generates a robust type 1 immune response. Specifically, host defense against T. gondii is defined by an IL-12-dependent IFN-γ response that is critical for host resistance. Previously, we demonstrated that host resistance is mediated by T-bet-dependent ILC-derived IFN-γ by maintaining IRF8+ conventional type 1 dendritic cells during parasitic infection. Therefore, we hypothesized that innate lymphoid cells are indispensable for host survival. Surprisingly, we observed that T-bet-deficient mice succumb to infection quicker than do mice lacking lymphocytes, suggesting an unknown T-bet-dependent-mediated host defense pathway. Analysis of parasite-mediated inflammatory myeloid cells revealed a novel subpopulation of T-bet+ myeloid cells (TMCs). Our results reveal that TMCs have the largest intracellular parasite burden compared with other professional phagocytes, suggesting they are associated with active killing of T. gondii. Mechanistically, we established that IL-12 is necessary for the induction of inflammatory TMCs during infection and these cells are linked to a role in host survival.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"8 4","pages":"355-362"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11066714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140873962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Air Pollution Drives Macrophage Senescence through a Phagolysosome-15-Lipoxygenase Pathway. 空气污染通过吞噬溶酶体-15-脂氧合酶途径促使巨噬细胞衰老
ImmunoHorizons Pub Date : 2024-04-01 DOI: 10.4049/immunohorizons.2300096
Sarah A Thomas, H. Yong, Ana M Rule, N. Gour, Stephane Lajoie
{"title":"Air Pollution Drives Macrophage Senescence through a Phagolysosome-15-Lipoxygenase Pathway.","authors":"Sarah A Thomas, H. Yong, Ana M Rule, N. Gour, Stephane Lajoie","doi":"10.4049/immunohorizons.2300096","DOIUrl":"https://doi.org/10.4049/immunohorizons.2300096","url":null,"abstract":"Urban particulate matter (PM; uPM) poses significant health risks, particularly to the respiratory system. Fine particles, such as PM2.5, can penetrate deep into the lungs and exacerbate a range of health problems, including emphysema, asthma, and lung cancer. PM exposure is also linked to extrapulmonary disorders such as heart and neurodegenerative diseases. Moreover, prolonged exposure to elevated PM levels can reduce overall life expectancy. Senescence is a dysfunctional cell state typically associated with age but can also be precipitated by environmental stressors. This study aimed to determine whether uPM could drive senescence in macrophages, an essential cell type involved in particulate phagocytosis-mediated clearance. Although it is known that uPM exposure impairs immune function, this deficit is multifaceted and incompletely understood, partly because of the use of particulates such as diesel exhaust particles as a surrogate for true uPM. uPM was collected from several locations in the United States, including Baltimore, Houston, and Phoenix. Bone marrow-derived macrophages were stimulated with uPM or reference particulates (e.g., diesel exhaust particles) to assess senescence-related parameters. We report that uPM-exposed bone marrow-derived macrophages adopt a senescent phenotype characterized by increased IL-1α secretion, senescence-associated β-galactosidase activity, and diminished proliferation. Exposure to allergens failed to elicit such a response, supporting a distinction between different types of environmental exposure. uPM-induced senescence was independent of key macrophage activation pathways, specifically inflammasome and scavenger receptors. However, inhibition of the phagolysosome pathway abrogated senescence markers, supporting this phenotype's attribution to uPM phagocytosis. These data suggest that uPM exposure leads to macrophage senescence, which may contribute to immunopathology.","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"145 ","pages":"307-316"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140767739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IL-17RA-Mediated Epithelial Cell Activity Prevents Severe Inflammatory Response to Helicobacter pylori Infection. IL-17RA介导的上皮细胞活性可预防幽门螺旋杆菌感染引起的严重炎症反应
ImmunoHorizons Pub Date : 2024-04-01 DOI: 10.4049/immunohorizons.2300078
Lee C. Brackman, Matthew S. Jung, Eseoghene I Ogaga, Nikhita Joshi, Lydia E. Wroblewski, M. Piazuelo, R. Peek, Y. Choksi, H. Algood
{"title":"IL-17RA-Mediated Epithelial Cell Activity Prevents Severe Inflammatory Response to Helicobacter pylori Infection.","authors":"Lee C. Brackman, Matthew S. Jung, Eseoghene I Ogaga, Nikhita Joshi, Lydia E. Wroblewski, M. Piazuelo, R. Peek, Y. Choksi, H. Algood","doi":"10.4049/immunohorizons.2300078","DOIUrl":"https://doi.org/10.4049/immunohorizons.2300078","url":null,"abstract":"Helicobacter pylori is a Gram-negative pathogen that colonizes the stomach, induces inflammation, and drives pathological changes in the stomach tissue, including gastric cancer. As the principal cytokine produced by Th17 cells, IL-17 mediates protective immunity against pathogens by inducing the activation and mobilization of neutrophils. Whereas IL-17A is largely produced by lymphocytes, the IL-17 receptor is expressed in epithelial cells, fibroblasts, and hematopoietic cells. Loss of the IL-17RA in mice results in impaired antimicrobial responses to extracellular bacteria. In the context of H. pylori infection, this is compounded by extensive inflammation in Il17ra-/- mice. In this study, Foxa3creIl17rafl/fl (Il17raΔGI-Epi) and Il17rafl/fl (control) mice were used to test the hypothesis that IL-17RA signaling, specifically in epithelial cells, protects against severe inflammation after H. pylori infection. The data indicate that Il17raΔGI-Epi mice develop increased inflammation compared with controls. Despite reduced Pigr expression, levels of IgA increased in the gastric wash, suggesting significant increase in Ag-specific activation of the T follicular helper/B cell axis. Gene expression analysis of stomach tissues indicate that both acute and chronic responses are significantly increased in Il17raΔGI-Epi mice compared with controls. These data suggest that a deficiency of IL-17RA in epithelial cells is sufficient to drive chronic inflammation and hyperactivation of the Th17/T follicular helper/B cell axis but is not required for recruitment of polymorphonuclear neutrophils. Furthermore, the data suggest that fibroblasts can produce chemokines in response to IL-17 and may contribute to H. pylori-induced inflammation through this pathway.","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"55 42","pages":"339-353"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140796094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monophosphoryl Lipid A-based Adjuvant to Promote the Immunogenicity of Multivalent Meningococcal Polysaccharide Conjugate Vaccines. 基于单磷脂 A 的佐剂提高多价脑膜炎球菌多糖结合疫苗的免疫原性
ImmunoHorizons Pub Date : 2024-04-01 DOI: 10.4049/immunohorizons.2400013
K. Alugupalli
{"title":"Monophosphoryl Lipid A-based Adjuvant to Promote the Immunogenicity of Multivalent Meningococcal Polysaccharide Conjugate Vaccines.","authors":"K. Alugupalli","doi":"10.4049/immunohorizons.2400013","DOIUrl":"https://doi.org/10.4049/immunohorizons.2400013","url":null,"abstract":"Activation of the adaptive immune system requires the engagement of costimulatory pathways in addition to B and T cell Ag receptor signaling, and adjuvants play a central role in this process. Many Gram-negative bacterial polysaccharide vaccines, including the tetravalent meningococcal conjugate vaccines (MCV4) and typhoid Vi polysaccharide vaccines, do not incorporate adjuvants. The immunogenicity of typhoid vaccines is due to the presence of associated TLR4 ligands in these vaccines. Because the immunogenicity of MCV4 is poor and requires boosters, I hypothesized that TLR4 ligands are absent in MCV4 and that incorporation of a TLR4 ligand-based adjuvant would improve their immunogenicity. Consistent with this hypothesis, two Food and Drug Administration-approved MCV4 vaccines, MENVEO and MenQuadfi, lack TLR4 ligands. Admixing monophosphoryl lipid A, a TLR4 ligand-based adjuvant formulation named \"Turbo\" with MCV4 induced significantly improved IgM and IgG responses to all four meningococcal serogroup polysaccharides in adult and aged mice after a single immunization. Furthermore, in infant mice, a single booster was sufficient to promote a robust IgG response and 100% seroconversion when MCV4 was adjuvanted with Turbo. Turbo upregulated the expression of the costimulatory molecules CD40 and CD86 on B cells, and Turbo-driven adjuvanticity is lost in mice deficient in CD40 and CD86. These data suggest that Turbo induces the required costimulatory molecules for its adjuvant activity and that incorporation of Turbo could make bacterial polysaccharide vaccines more immunogenic, minimize booster requirements, and be cost-effective, particularly for those individuals in low- and middle-income and disease-endemic countries.","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"179 12","pages":"317-325"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140761697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TCF1highPD-1+Ly108+CD8+ T Cells Are Associated with Graft Preservation in Sensitized Mice Treated with Non-Fc Receptor-Binding CD3 Antibodies. TCF1highPD-1+Ly108+CD8+ T 细胞与非 Fc 受体结合型 CD3 抗体治疗致敏小鼠的移植物保存有关。
ImmunoHorizons Pub Date : 2024-04-01 DOI: 10.4049/immunohorizons.2300117
Takuji Ota, R. Goto, Takuya Harada, Agustina Forgioni, Ryo Kanazawa, Yoshikazu Ganchiku, N. Kawamura, Masaaki Watanabe, M. Fukai, Tsuyoshi Shimamura, A. Taketomi
{"title":"TCF1highPD-1+Ly108+CD8+ T Cells Are Associated with Graft Preservation in Sensitized Mice Treated with Non-Fc Receptor-Binding CD3 Antibodies.","authors":"Takuji Ota, R. Goto, Takuya Harada, Agustina Forgioni, Ryo Kanazawa, Yoshikazu Ganchiku, N. Kawamura, Masaaki Watanabe, M. Fukai, Tsuyoshi Shimamura, A. Taketomi","doi":"10.4049/immunohorizons.2300117","DOIUrl":"https://doi.org/10.4049/immunohorizons.2300117","url":null,"abstract":"The non-Fc-binding anti-CD3 Ab [anti-CD3F(ab')2] can induce graft acceptance depending on the therapeutic window in a rodent heart transplant model. The delayed protocol allows for early graft infiltration of lymphocytes, which may behave in an inhibitory manner. We investigated the most effective protocol for anti-CD3F(ab')2 in sensitized conditions to confirm the evidence for clinical application. C57BL/6 mice were sensitized with BALB/c tail skin grafts and transplanted with BALB/c heart grafts at 8-12 wk after sensitization. Fifty micrograms of anti-CD3F(ab')2 was administered daily for 5 consecutive days on days 1-5 (day 1 protocol) or days 3-7 (delayed protocol). In nonsensitized mice, the delayed protocol significantly prolonged graft survival after transplantation from BALB/c to naive B6 (median survival time [MST], >100 d). In contrast, the delayed protocol was unable to prevent graft rejection in sensitized mice (MST, 5 d). A significantly increased percentage of granzyme B+ CD8+ T cells was observed in the graft on day 3 posttransplantation in sensitized conditions. Further, the day 1 protocol significantly prolonged graft survival (MST, 18 d), even in sensitized conditions. Day 1 treatment significantly increased the percentage of Foxp3+CD25+CD4+ T cells and phenotypically changed CD8+ T cells in the graft (i.e., caused a significant increase in the proportion of Ly108+TCF1highPD-1+CD8+ T cells). In conclusion, different timings of delayed anti-CD3F(ab')2 treatment promoted allograft preservation in association with phenotypic changes in CD4+ and CD8+ T cells in the graft under sensitized conditions.","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"105 7","pages":"295-306"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140779091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membership Has Its Privileges. 会员有特权
ImmunoHorizons Pub Date : 2024-04-01 DOI: 10.4049/immunohorizons.2400035
Mark H Kaplan
{"title":"Membership Has Its Privileges.","authors":"Mark H Kaplan","doi":"10.4049/immunohorizons.2400035","DOIUrl":"https://doi.org/10.4049/immunohorizons.2400035","url":null,"abstract":"","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"8 4","pages":"354"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11066710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140874308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信