与宿主CD73缺失相关的自身免疫降低。

Q3 Medicine
Beanna Okeugo, Shabba A Armbrister, Rhea C Daniel, Zeina M Saleh, Jessica Wang, Salomea Giorgberidze, J Marc Rhoads, Yuying Liu
{"title":"与宿主CD73缺失相关的自身免疫降低。","authors":"Beanna Okeugo, Shabba A Armbrister, Rhea C Daniel, Zeina M Saleh, Jessica Wang, Salomea Giorgberidze, J Marc Rhoads, Yuying Liu","doi":"10.1093/immhor/vlae004","DOIUrl":null,"url":null,"abstract":"<p><p>CD73 is ubiquitously expressed and regulates critical functions across multiple organ systems. The sequential actions of CD39 and CD73 accomplish the conversion of adenosine triphosphate to adenosine and shift the adenosine triphosphate-driven proinflammatory immune cell milieu toward an anti-inflammatory state. This immunological switch is a major mechanism by which regulatory T (Treg) cells control inflammation. Foxp3 engages in Treg development and function. Foxp3 mutations result in the scurfy (SF) mouse phenotype and a rapidly lethal lymphoproliferative syndrome. We generated double knockout (KO) mouse (CD73KOSF) by breeding heterozygous Foxp3sf/J females to CD73KO male mice to remove host CD73. We initially aimed to use these mice to identify a specific probiotic-CD73 effect, previously shown for Limosilactobacillus reuteri DSM 17938. We expected CD73 deletion to enhance the severity of autoimmunity in SF mice. However, we unexpectedly observed that KO of host CD73 in SF mice clinically reduced the severity of autoimmunity including reduced ear thickness, increased ear size, and less deformed ears, along with less dry and brittle skin. KO of CD73 in SF mice significantly reduced the numbers of CD4+ and CD8+T cells in spleen and blood. We identified that KO of CD73 in SF mice reduced the numbers of T cells in the thymus compared with those in SF mice, indicating that the milder clinical phenotype may be due to reduced central and peripheral lymphoproliferation. These new findings suggest targeting CD73 could improve T cell-mediated dermatitis, one of the most common symptoms in Treg deficiency-associated primary immune deficiencies.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841978/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reduced autoimmunity associated with deletion of host CD73.\",\"authors\":\"Beanna Okeugo, Shabba A Armbrister, Rhea C Daniel, Zeina M Saleh, Jessica Wang, Salomea Giorgberidze, J Marc Rhoads, Yuying Liu\",\"doi\":\"10.1093/immhor/vlae004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CD73 is ubiquitously expressed and regulates critical functions across multiple organ systems. The sequential actions of CD39 and CD73 accomplish the conversion of adenosine triphosphate to adenosine and shift the adenosine triphosphate-driven proinflammatory immune cell milieu toward an anti-inflammatory state. This immunological switch is a major mechanism by which regulatory T (Treg) cells control inflammation. Foxp3 engages in Treg development and function. Foxp3 mutations result in the scurfy (SF) mouse phenotype and a rapidly lethal lymphoproliferative syndrome. We generated double knockout (KO) mouse (CD73KOSF) by breeding heterozygous Foxp3sf/J females to CD73KO male mice to remove host CD73. We initially aimed to use these mice to identify a specific probiotic-CD73 effect, previously shown for Limosilactobacillus reuteri DSM 17938. We expected CD73 deletion to enhance the severity of autoimmunity in SF mice. However, we unexpectedly observed that KO of host CD73 in SF mice clinically reduced the severity of autoimmunity including reduced ear thickness, increased ear size, and less deformed ears, along with less dry and brittle skin. KO of CD73 in SF mice significantly reduced the numbers of CD4+ and CD8+T cells in spleen and blood. We identified that KO of CD73 in SF mice reduced the numbers of T cells in the thymus compared with those in SF mice, indicating that the milder clinical phenotype may be due to reduced central and peripheral lymphoproliferation. These new findings suggest targeting CD73 could improve T cell-mediated dermatitis, one of the most common symptoms in Treg deficiency-associated primary immune deficiencies.</p>\",\"PeriodicalId\":94037,\"journal\":{\"name\":\"ImmunoHorizons\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841978/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ImmunoHorizons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/immhor/vlae004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immhor/vlae004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

CD73普遍表达并调节多个器官系统的关键功能。CD39和CD73的连续作用完成了三磷酸腺苷向腺苷的转化,并将三磷酸腺苷驱动的促炎免疫细胞环境转变为抗炎状态。这种免疫开关是调节性T (Treg)细胞控制炎症的主要机制。Foxp3参与Treg的发育和功能。Foxp3突变导致安全(SF)小鼠表型和快速致死性淋巴细胞增生性综合征。我们将杂合子Foxp3sf/J雌性小鼠与CD73KO雄性小鼠杂交,产生双敲除(KO)小鼠(CD73KOSF),以去除宿主CD73。我们最初的目的是用这些小鼠来鉴定一种特异性的益生菌cd73效应,这种效应先前在罗伊氏乳酸杆菌DSM 17938中得到了证实。我们预期CD73缺失会增强SF小鼠自身免疫的严重程度。然而,我们出乎意料地观察到,SF小鼠宿主CD73的KO在临床上降低了自身免疫的严重程度,包括耳朵厚度减少,耳朵大小增加,耳朵变形减少,皮肤干燥和脆性减少。SF小鼠CD73的KO显著降低脾脏和血液中CD4+和CD8+T细胞的数量。我们发现,与SF小鼠相比,SF小鼠中CD73的KO减少了胸腺中T细胞的数量,这表明较轻的临床表型可能是由于中央和外周淋巴细胞增殖减少。这些新发现表明靶向CD73可以改善T细胞介导的皮炎,这是Treg缺乏相关的原发性免疫缺陷中最常见的症状之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced autoimmunity associated with deletion of host CD73.

CD73 is ubiquitously expressed and regulates critical functions across multiple organ systems. The sequential actions of CD39 and CD73 accomplish the conversion of adenosine triphosphate to adenosine and shift the adenosine triphosphate-driven proinflammatory immune cell milieu toward an anti-inflammatory state. This immunological switch is a major mechanism by which regulatory T (Treg) cells control inflammation. Foxp3 engages in Treg development and function. Foxp3 mutations result in the scurfy (SF) mouse phenotype and a rapidly lethal lymphoproliferative syndrome. We generated double knockout (KO) mouse (CD73KOSF) by breeding heterozygous Foxp3sf/J females to CD73KO male mice to remove host CD73. We initially aimed to use these mice to identify a specific probiotic-CD73 effect, previously shown for Limosilactobacillus reuteri DSM 17938. We expected CD73 deletion to enhance the severity of autoimmunity in SF mice. However, we unexpectedly observed that KO of host CD73 in SF mice clinically reduced the severity of autoimmunity including reduced ear thickness, increased ear size, and less deformed ears, along with less dry and brittle skin. KO of CD73 in SF mice significantly reduced the numbers of CD4+ and CD8+T cells in spleen and blood. We identified that KO of CD73 in SF mice reduced the numbers of T cells in the thymus compared with those in SF mice, indicating that the milder clinical phenotype may be due to reduced central and peripheral lymphoproliferation. These new findings suggest targeting CD73 could improve T cell-mediated dermatitis, one of the most common symptoms in Treg deficiency-associated primary immune deficiencies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信