European journal of microbiology & immunology最新文献

筛选
英文 中文
Corrigendum to: Pro-inflammatory and anti-inflammatory responses in B cells during Salmonella infection. 对沙门氏菌感染期间B细胞的促炎和抗炎反应的更正。
European journal of microbiology & immunology Pub Date : 2025-05-20 DOI: 10.1556/1886.2024.11188
Araceli Perez-Lopez, Gabriela Hernandez-Galicia, Luis Uriel Lopez-Bailon, Ana D Gonzalez-Telona, Roberto Rosales-Reyes, Celia M Alpuche-Aranda, Jose I Santos-Preciado, Vianney Ortiz-Navarrete
{"title":"Corrigendum to: Pro-inflammatory and anti-inflammatory responses in B cells during Salmonella infection.","authors":"Araceli Perez-Lopez, Gabriela Hernandez-Galicia, Luis Uriel Lopez-Bailon, Ana D Gonzalez-Telona, Roberto Rosales-Reyes, Celia M Alpuche-Aranda, Jose I Santos-Preciado, Vianney Ortiz-Navarrete","doi":"10.1556/1886.2024.11188","DOIUrl":"https://doi.org/10.1556/1886.2024.11188","url":null,"abstract":"","PeriodicalId":93998,"journal":{"name":"European journal of microbiology & immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144121797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural biology of Nipah virus G and F glycoproteins: Insights into therapeutic and vaccine development. 尼帕病毒G和F糖蛋白的结构生物学:对治疗和疫苗开发的见解。
European journal of microbiology & immunology Pub Date : 2025-04-22 DOI: 10.1556/1886.2025.00017
Mohd Zulkifli Salleh
{"title":"Structural biology of Nipah virus G and F glycoproteins: Insights into therapeutic and vaccine development.","authors":"Mohd Zulkifli Salleh","doi":"10.1556/1886.2025.00017","DOIUrl":"https://doi.org/10.1556/1886.2025.00017","url":null,"abstract":"<p><p>Nipah virus (NiV), a highly pathogenic zoonotic paramyxovirus, poses a significant public health threat due to its high mortality rate and potential for human-to-human transmission. The attachment (G) and fusion (F) glycoproteins play pivotal roles in viral entry and host-cell fusion, making them prime targets for therapeutic and vaccine development. Recent advances in structural biology have provided high-resolution insights into the molecular architecture and functional dynamics of these glycoproteins, revealing key epitopes and domains essential for neutralizing antibody responses. The G glycoprotein's head domain and the prefusion F ectodomain have emerged as focal points for vaccine design, with multivalent display strategies showing promise in enhancing immunogenicity and breadth of protection. Structural studies have also informed the development of monoclonal antibodies like m102.4, offering potential post-exposure therapies. Additionally, insights from cryo-electron microscopy and X-ray crystallography have facilitated the design of structure-based inhibitors and next-generation vaccines, including nanoparticle and multi-epitope formulations. This review highlights recent structural findings on the NiV G and F glycoproteins, their implications for therapeutic strategies, and the challenges in developing effective and targeted interventions. A deeper understanding of these glycoproteins will be crucial for advancing NiV-specific therapeutics and vaccines, ultimately enhancing global preparedness against future outbreaks.</p>","PeriodicalId":93998,"journal":{"name":"European journal of microbiology & immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144048673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct antibiotic treatment regimens differentially affect colonization resistance against multi-drug resistant Pseudomonas aeruginosa in mice. 不同的抗生素治疗方案不同地影响小鼠对多重耐药铜绿假单胞菌的定植耐药性。
European journal of microbiology & immunology Pub Date : 2025-04-14 DOI: 10.1556/1886.2025.00015
Markus M Heimesaat, Soraya Mousavi, Nizar W Shayya, Alexandra Bittroff-Leben, Ines Puschendorf, Gernot Reifenberger, Stefan Bereswill
{"title":"Distinct antibiotic treatment regimens differentially affect colonization resistance against multi-drug resistant Pseudomonas aeruginosa in mice.","authors":"Markus M Heimesaat, Soraya Mousavi, Nizar W Shayya, Alexandra Bittroff-Leben, Ines Puschendorf, Gernot Reifenberger, Stefan Bereswill","doi":"10.1556/1886.2025.00015","DOIUrl":"https://doi.org/10.1556/1886.2025.00015","url":null,"abstract":"<p><p>Besides its live-saving properties, antibiotic treatment affects the commensal microbiota facilitating colonization with potentially harmful microorganisms. Here we tested how commonly applied antibiotics induced gut microbiota changes and predisposed to intestinal carriage of multi-drug resistant Pseudomonas aeruginosa (MDR Psae) upon exposure. Therefore, mice received either vancomycin, ciprofloxacin, ampicillin plus sulbactam (A/S) or no antibiotics via the drinking water and were perorally challenged with a clinical MDR Psae isolate after antibiotic withdrawal. Whereas 100% of A/S and 55% of ciprofloxacin pretreated mice harbored Psae in their feces seven days post-challenge, intestinal Psae carriage rates were 20.0% and 26.3% in vancomycin pretreated and untreated mice, respectively. Microbiota analyses revealed that immediately before MDR Psae challenge, A/S pretreated mice displayed the lowest total bacterial, lactobacilli and Clostridium leptum fecal loads compared to other cohorts. Seven days following Psae exposure, however, higher numbers of apoptotic colonic epithelial cells were observed in A/S pretreated versus untreated mice that were accompanied by more enhanced innate and adaptive immune cell responses and nitric oxide secretion in colonic and ileal biopsies in the former versus the latter. In conclusion, distinct gut microbiota shifts following A/S pretreatment facilitate pronounced intestinal MDR Psae colonization and pro-inflammatory immune responses upon oral exposure.</p>","PeriodicalId":93998,"journal":{"name":"European journal of microbiology & immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144046179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Come to the dark side - A review on the health-beneficial and disease-alleviating effects of cocoa-rich dark chocolate. 来到黑暗的一面-对富含可可的黑巧克力有益健康和减轻疾病的作用的综述。
European journal of microbiology & immunology Pub Date : 2025-03-24 DOI: 10.1556/1886.2025.00007
Heike Muth, Stefan Bereswill, Markus M Heimesaat
{"title":"Come to the dark side - A review on the health-beneficial and disease-alleviating effects of cocoa-rich dark chocolate.","authors":"Heike Muth, Stefan Bereswill, Markus M Heimesaat","doi":"10.1556/1886.2025.00007","DOIUrl":"https://doi.org/10.1556/1886.2025.00007","url":null,"abstract":"<p><p>Cocoa that is abundant in dark chocolate is known for its anti-inflammatory effects that are mainly due to biologically active ingredients like polyphenols and methylxanthines. We here provide a comprehensive literature survey of both, in vitro and in vivo studies including clinical trials summarizing recent evidence on the immune-modulatory effects exerted by application of cocoa-rich dark chocolate or distinct cocoa-derived molecules. The survey revealed that dark chocolate and its derivatives could effectively dampen pro-inflammatory including oxidative stress responses in vascular diseases including atherosclerosis, hypertension, and decompression sickness, metabolic morbidities such as obesity and type 2 diabetes mellitus, celiac disease, chronic kidney diseases, and polycystic ovary syndrome, enhance gut epithelial barrier function, and modulate pain sensations. On the other hand, dark chocolate consumption intake was found to worsen acne symptoms. In conclusion, dietary supplementation with dark chocolate with high contents of biologically active polyphenols and methylxanthines might be promising adjunct immune-modulatory treatment options of distinct acute as well as chronic inflammatory morbidities that need to be evaluated in more detail in future in vivo including clinical studies.</p>","PeriodicalId":93998,"journal":{"name":"European journal of microbiology & immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phagetherapy updates: New frontiers against antibiotic resistance. 噬菌体治疗最新进展:抗抗生素耐药性的新领域。
European journal of microbiology & immunology Pub Date : 2025-03-17 Print Date: 2025-03-19 DOI: 10.1556/1886.2024.00126
Shiza Malik, Omar Ahsan, Khalid Muhammad, Nayla Munawar, Yasir Waheed
{"title":"Phagetherapy updates: New frontiers against antibiotic resistance.","authors":"Shiza Malik, Omar Ahsan, Khalid Muhammad, Nayla Munawar, Yasir Waheed","doi":"10.1556/1886.2024.00126","DOIUrl":"10.1556/1886.2024.00126","url":null,"abstract":"<p><p>Antibiotic resistance is a major problem in the healthcare industry, and it presents difficulties in managing bacterial diseases worldwide. The need to find alternative antibiotic-containing methods is thus a major area for the scientific community to work on. Bacteriophage therapy is an interesting alternative that has been used in scientific research for a long time to tackle antibiotic-resistant bacteria. The purpose of this review was to compile the latest data on bacteriophages, which are progressively being used as alternatives to antibiotics, and to identify the mechanisms associated with phage therapy. The results section delves into the growing challenges posed by antibiotics and explores the potential of bacteriophages as therapeutic alternatives. This study discusses how phages can decrease antibiotic resistance, highlighting their role in modulating microbiomes and addressing various complications. This study explored the intriguing question of whether bacteriophages can combat nonbacterial diseases and examined their indirect use in pest control. In addition, this study explores the application of the CRISPR-Cas system in combating antibiotic resistance and specifically addresses phage therapy for secondary bacterial infections in COVID-19. We will further discuss whether bacteriophages are a noteworthy alternative to antibiotics by considering the evolutionary trade-offs between phages and antibiotic resistance. This section concludes by outlining future perspectives and acknowledging limitations, particularly in the context of phage and CRISPR-Cas9-mediated phage therapy. The methodology adopted for this study is a comprehensive research strategy using the Google Scholar and PubMed databases, among others. In conclusion, phage therapy is a promising strategy for tackling antibiotic-resistant bacteria, contributing to improved food production and mitigating secondary health effects. However, effective regulation requires careful selection of phages in conjunction with antibiotics to ensure judicious control of the coevolutionary dynamics between phages and antibiotics.</p>","PeriodicalId":93998,"journal":{"name":"European journal of microbiology & immunology","volume":" ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143652807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pro-inflammatory and anti-inflammatory responses in B cells during Salmonella infection. 沙门氏菌感染过程中 B 细胞的促炎和抗炎反应
European journal of microbiology & immunology Pub Date : 2025-03-11 Print Date: 2025-03-19 DOI: 10.1556/1886.2024.00088
Araceli Perez-Lopez, Gabriela Hernandez-Galicia, Luis Uriel Lopez-Bailon, Ana D Gonzalez-Telona, Roberto Rosales-Reyes, Celia M Alpuche-Aranda, Jose I Santos-Preciado, Vianney Ortiz-Navarrete
{"title":"Pro-inflammatory and anti-inflammatory responses in B cells during Salmonella infection.","authors":"Araceli Perez-Lopez, Gabriela Hernandez-Galicia, Luis Uriel Lopez-Bailon, Ana D Gonzalez-Telona, Roberto Rosales-Reyes, Celia M Alpuche-Aranda, Jose I Santos-Preciado, Vianney Ortiz-Navarrete","doi":"10.1556/1886.2024.00088","DOIUrl":"10.1556/1886.2024.00088","url":null,"abstract":"<p><p>B-cells serve as a niche for Salmonella to establish a chronic infection, enabling bacteria to evade immune responses. One mechanism Salmonella uses to survive inside B-cells involves inhibiting the NLRC4 inflammasome activation, thereby preventing pyroptotic cell death. This study investigates whether Salmonella-infected B-cells can mount bactericidal responses to control intracellular bacteria. Our results show that Salmonella-infected B-cells can produce and release TNFα, IL-6, and IL-10, but not RANTES. Furthermore, priming B-cells with TNFα, IL-1β, or IFNγ enhances their bactericidal activity by promoting the production of reactive oxygen and nitrogen production species, reducing intracellular load. These results suggest that B-cells can clear Salmonella infection within a pro-inflammatory environment. However, the concurrent production of IL-10 may counteract the effects of pro-inflammatory cytokines, potentially modulating the immune response in the microenvironment.</p>","PeriodicalId":93998,"journal":{"name":"European journal of microbiology & immunology","volume":" ","pages":"32-41"},"PeriodicalIF":0.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143607508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent evidence on prominent anti-bacterial capacities of compounds derived from the mangosteen fruit. 最近的证据表明,从山竹果实中提取的化合物具有显著的抗菌能力。
European journal of microbiology & immunology Pub Date : 2025-03-03 DOI: 10.1556/1886.2025.00006
Vincent A Eiselt, Stefan Bereswill, Markus M Heimesaat
{"title":"Recent evidence on prominent anti-bacterial capacities of compounds derived from the mangosteen fruit.","authors":"Vincent A Eiselt, Stefan Bereswill, Markus M Heimesaat","doi":"10.1556/1886.2025.00006","DOIUrl":"https://doi.org/10.1556/1886.2025.00006","url":null,"abstract":"<p><p>Multi-drug resistant bacterial infections are of global concern, leading to staggering health care costs and loss of lives. Hence, novel therapeutic options are highly required. Garcinia mangostana, a plant known as mangosteen (also termed \"queen of the fruits\"), is said to possess a multitude of favorable features like anti-microbial capacity. Accordingly, we compiled a literature review addressing the potential of the mangosteen and its compounds for the treatment of bacterial infections. The included 23 publications consistently reported the inhibition or elimination of bacteria following the administration of mangosteen extracts and compounds such as the xanthone α-mangostin, both in vitro and in vivo. Even pathogens like methicillin-resistant Staphylococcus aureus as well as vancomycin-resistant Enterococcus species were tackled. While the effect of mangosteen extracts and compounds appeared to be dose-dependent, they exhibited also anti-biofilm activity and strong stability under varying conditions, suggesting suitability for a versatile approach to combat infectious diseases. Moreover, the combination of α-mangostin with other phytotherapeutic agents and especially antibiotics revealed enhanced anti-bacterial results, at low or no toxicity. In light of this review, we conclude that mangosteen extracts and compounds are promising candidates for the anti-bacterial therapy of human infections, warranting further consideration in clinical trials.</p>","PeriodicalId":93998,"journal":{"name":"European journal of microbiology & immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143545243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acsbg1 regulates differentiation and inflammatory properties of CD4+ T cells. Acsbg1调节CD4+ T细胞的分化和炎症特性。
European journal of microbiology & immunology Pub Date : 2025-02-12 Print Date: 2025-03-19 DOI: 10.1556/1886.2025.00003
Martina Palatella, Friederike Kruse, Silke Glage, André Bleich, Marina Greweling-Pils, Jochen Huehn
{"title":"Acsbg1 regulates differentiation and inflammatory properties of CD4+ T cells.","authors":"Martina Palatella, Friederike Kruse, Silke Glage, André Bleich, Marina Greweling-Pils, Jochen Huehn","doi":"10.1556/1886.2025.00003","DOIUrl":"10.1556/1886.2025.00003","url":null,"abstract":"<p><p>Epigenetic modifications are critical for the regulation of CD4+ T cell differentiation and function. Previously, we identified Acyl-CoA Synthetase Bubble Gum 1 (Acsbg1), a gene involved in fatty acid metabolism, as part of an epigenetic signature that was selectively demethylated in ex vivo isolated T helper 17 (TH17) cells. However, its functional relevance for CD4+ T cells remains incompletely understood. Here, we used in vitro differentiation assays and the adoptive transfer colitis model to investigate the role of Acsbg1 in the differentiation and function of TH1, TH17, and regulatory T (Treg) cells. In vitro, Acsbg1 was expressed in both TH17 and in vitro-induced Treg (iTreg) cells, whereas TH1 cells lacked Acsbg1 expression. Accordingly, Acsbg1 deficiency resulted in impaired TH17 and iTreg differentiation, whereas TH1 differentiation was unaffected. In vivo, upon adoptive transfer of Acsbg1⁻/⁻ Tnaïve cells, immunodeficient recipient mice exhibited an exacerbated colitis, characterized by an altered balance of TH17 and Treg cells, indicating that Acsbg1 expression is essential for optimal TH17 and Treg cell differentiation and function. Our findings highlight the importance of fatty acid (FA) metabolism in maintaining immune homeostasis by regulating T cell differentiation and provide novel insights into the metabolic targeting of inflammatory diseases.</p>","PeriodicalId":93998,"journal":{"name":"European journal of microbiology & immunology","volume":" ","pages":"21-31"},"PeriodicalIF":0.0,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143401028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of the anti-bacterial effects exerted by Aronia melanocarpa. 黑桫椤抑菌作用的研究进展。
European journal of microbiology & immunology Pub Date : 2025-02-12 Print Date: 2025-03-19 DOI: 10.1556/1886.2024.00139
Shirin Azizi Ghanbari, Soraya Mousavi, Stefan Bereswill, Markus M Heimesaat
{"title":"A review of the anti-bacterial effects exerted by Aronia melanocarpa.","authors":"Shirin Azizi Ghanbari, Soraya Mousavi, Stefan Bereswill, Markus M Heimesaat","doi":"10.1556/1886.2024.00139","DOIUrl":"10.1556/1886.2024.00139","url":null,"abstract":"<p><p>Aronia melanocarpa, a main constituent of black chokeberry, provides a rich source of bioactive molecules including polyphenols, flavonoids, and anthocyanins and has been used for long in traditional medicine due to its various health-promoting and disease-alleviating properties. The aim of our literature survey was to provide an actual update of evidence regarding the antibacterial activities exerted by Aronia melanocarpa and its potential application for the treatment of human bacterial pathogenic including food-borne infections. Our survey revealed that distinct ingredients in Aronia melanocarpa do not only inhibit growth of Gram-positive and to a lesser extent of Gram-negative bacteria, but also biofilm formation that is even more pronounced upon combined application. Furthermore, the anti-microbial effects against food-spoiling bacteria underscores the application of defined Aronia-derived molecules in food preservation decreasing the risk for transmission of food-borne pathogens and thereby, improving food safety. Notably, in vivo studies revealed that prophylactic Aronia juice application alleviated murine Listeria monocytogenes-induced enteritis, dampened growth of streptococci involved in dental caries development, and decreased the incidence of urinary tract infections in nursing home residents. In conclusion, Aronia-derived bioactive molecules exhibit promising anti-bacterial and disease-alleviating effects that should be further elucidated in clinical studies.</p>","PeriodicalId":93998,"journal":{"name":"European journal of microbiology & immunology","volume":" ","pages":"13-20"},"PeriodicalIF":0.0,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143401011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential antibiosis predisposes mice to Campylobacter jejuni infection: Deeper insights into the impact of the gut microbiota composition in colonization resistance. 不同抗生素使小鼠易受空肠弯曲杆菌感染:深入了解肠道微生物群组成对定植抗性的影响。
European journal of microbiology & immunology Pub Date : 2025-02-10 Print Date: 2025-03-19 DOI: 10.1556/1886.2024.00140
Nizar W Shayya, Soraya Mousavi, Kerstin Stingl, Stefan Bereswill, Markus M Heimesaat
{"title":"Differential antibiosis predisposes mice to Campylobacter jejuni infection: Deeper insights into the impact of the gut microbiota composition in colonization resistance.","authors":"Nizar W Shayya, Soraya Mousavi, Kerstin Stingl, Stefan Bereswill, Markus M Heimesaat","doi":"10.1556/1886.2024.00140","DOIUrl":"10.1556/1886.2024.00140","url":null,"abstract":"<p><p>Conventional laboratory mice are protected from oral Campylobacter jejuni infection due to colonization resistance (CR) mediated by their host-specific gut microbiota. Here, we used differential effects of distinct antibiotics on gut microbiota composition to identify microbial groups associated with CR against C. jejuni. Therefore, specific pathogen-free (SPF) mice were subjected to ampicillin plus sulbactam (A/S), ciprofloxacin (CIP), or vancomycin (VAN) via the drinking water for 28 days or left untreated before peroral C. jejuni challenge. Cultural analyses revealed that CR displayed by untreated mice was abrogated by A/S treatment, but only reduced in mice treated with CIP or VAN. Notably, differential analysis of antibiotic-induced microbiota changes and C. jejuni colonization dynamics identified lactobacilli and Clostridium leptum as key microbial groups that were associated with CR. Notably, the complete eradication of intestinal bacteria in A/S treated mice supported high intestinal C. jejuni colonization levels which triggered apoptosis and inflammatory responses accompanied by enhanced expression of matrix-degrading gelatinases in the colon. In conclusion, A/S treated mice represent a valuable infection model for the study of campylobacteriosis and the treatment of mice with specific antibiotics support the investigation of molecular mechanisms involved in CR against enteropathogens.</p>","PeriodicalId":93998,"journal":{"name":"European journal of microbiology & immunology","volume":" ","pages":"42-56"},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143384556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信