{"title":"Phagetherapy updates: New frontiers against antibiotic resistance.","authors":"Shiza Malik, Omar Ahsan, Khalid Muhammad, Nayla Munawar, Yasir Waheed","doi":"10.1556/1886.2024.00126","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance is a major problem in the healthcare industry, and it presents difficulties in managing bacterial diseases worldwide. The need to find alternative antibiotic-containing methods is thus a major area for the scientific community to work on. Bacteriophage therapy is an interesting alternative that has been used in scientific research for a long time to tackle antibiotic-resistant bacteria. The purpose of this review was to compile the latest data on bacteriophages, which are progressively being used as alternatives to antibiotics, and to identify the mechanisms associated with phage therapy. The results section delves into the growing challenges posed by antibiotics and explores the potential of bacteriophages as therapeutic alternatives. This study discusses how phages can decrease antibiotic resistance, highlighting their role in modulating microbiomes and addressing various complications. This study explored the intriguing question of whether bacteriophages can combat nonbacterial diseases and examined their indirect use in pest control. In addition, this study explores the application of the CRISPR-Cas system in combating antibiotic resistance and specifically addresses phage therapy for secondary bacterial infections in COVID-19. We will further discuss whether bacteriophages are a noteworthy alternative to antibiotics by considering the evolutionary trade-offs between phages and antibiotic resistance. This section concludes by outlining future perspectives and acknowledging limitations, particularly in the context of phage and CRISPR-Cas9-mediated phage therapy. The methodology adopted for this study is a comprehensive research strategy using the Google Scholar and PubMed databases, among others. In conclusion, phage therapy is a promising strategy for tackling antibiotic-resistant bacteria, contributing to improved food production and mitigating secondary health effects. However, effective regulation requires careful selection of phages in conjunction with antibiotics to ensure judicious control of the coevolutionary dynamics between phages and antibiotics.</p>","PeriodicalId":93998,"journal":{"name":"European journal of microbiology & immunology","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of microbiology & immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1886.2024.00126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic resistance is a major problem in the healthcare industry, and it presents difficulties in managing bacterial diseases worldwide. The need to find alternative antibiotic-containing methods is thus a major area for the scientific community to work on. Bacteriophage therapy is an interesting alternative that has been used in scientific research for a long time to tackle antibiotic-resistant bacteria. The purpose of this review was to compile the latest data on bacteriophages, which are progressively being used as alternatives to antibiotics, and to identify the mechanisms associated with phage therapy. The results section delves into the growing challenges posed by antibiotics and explores the potential of bacteriophages as therapeutic alternatives. This study discusses how phages can decrease antibiotic resistance, highlighting their role in modulating microbiomes and addressing various complications. This study explored the intriguing question of whether bacteriophages can combat nonbacterial diseases and examined their indirect use in pest control. In addition, this study explores the application of the CRISPR-Cas system in combating antibiotic resistance and specifically addresses phage therapy for secondary bacterial infections in COVID-19. We will further discuss whether bacteriophages are a noteworthy alternative to antibiotics by considering the evolutionary trade-offs between phages and antibiotic resistance. This section concludes by outlining future perspectives and acknowledging limitations, particularly in the context of phage and CRISPR-Cas9-mediated phage therapy. The methodology adopted for this study is a comprehensive research strategy using the Google Scholar and PubMed databases, among others. In conclusion, phage therapy is a promising strategy for tackling antibiotic-resistant bacteria, contributing to improved food production and mitigating secondary health effects. However, effective regulation requires careful selection of phages in conjunction with antibiotics to ensure judicious control of the coevolutionary dynamics between phages and antibiotics.