Cell systemsPub Date : 2024-11-04DOI: 10.1016/j.cels.2024.10.002
Feng-Shu Hsieh, Duy P M Nguyen, Mathias S Heltberg, Chia-Chou Wu, Yi-Chen Lee, Mogens H Jensen, Sheng-Hong Chen
{"title":"Plausible, robust biological oscillations through allelic buffering.","authors":"Feng-Shu Hsieh, Duy P M Nguyen, Mathias S Heltberg, Chia-Chou Wu, Yi-Chen Lee, Mogens H Jensen, Sheng-Hong Chen","doi":"10.1016/j.cels.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.cels.2024.10.002","url":null,"abstract":"<p><p>Biological oscillators can specify time- and dose-dependent functions via dedicated control of their oscillatory dynamics. However, how biological oscillators, which recurrently activate noisy biochemical processes, achieve robust oscillations remains unclear. Here, we characterize the long-term oscillations of p53 and its negative feedback regulator Mdm2 in single cells after DNA damage. Whereas p53 oscillates regularly, Mdm2 from a single MDM2 allele exhibits random unresponsiveness to ∼9% of p53 pulses. Using allelic-specific imaging of MDM2 activity, we show that MDM2 alleles buffer each other to maintain p53 pulse amplitude. Removal of MDM2 allelic buffering cripples the robustness of p53 amplitude, thereby elevating p21 levels and cell-cycle arrest. In silico simulations support that allelic buffering enhances the robustness of biological oscillators and broadens their plausible biochemical space. Our findings show how allelic buffering ensures robust p53 oscillations, highlighting the potential importance of allelic buffering for the emergence of robust biological oscillators during evolution. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell systemsPub Date : 2024-10-29DOI: 10.1016/j.cels.2024.10.001
Shu Wang, Amy J Myers, Edward B Irvine, Chuangqi Wang, Pauline Maiello, Mark A Rodgers, Jaime Tomko, Kara Kracinovsky, H Jacob Borish, Michael C Chao, Douaa Mugahid, Patricia A Darrah, Robert A Seder, Mario Roederer, Charles A Scanga, Philana Ling Lin, Galit Alter, Sarah M Fortune, JoAnne L Flynn, Douglas A Lauffenburger
{"title":"Markov field network model of multi-modal data predicts effects of immune system perturbations on intravenous BCG vaccination in macaques.","authors":"Shu Wang, Amy J Myers, Edward B Irvine, Chuangqi Wang, Pauline Maiello, Mark A Rodgers, Jaime Tomko, Kara Kracinovsky, H Jacob Borish, Michael C Chao, Douaa Mugahid, Patricia A Darrah, Robert A Seder, Mario Roederer, Charles A Scanga, Philana Ling Lin, Galit Alter, Sarah M Fortune, JoAnne L Flynn, Douglas A Lauffenburger","doi":"10.1016/j.cels.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.cels.2024.10.001","url":null,"abstract":"<p><p>Analysis of multi-modal datasets can identify multi-scale interactions underlying biological systems but can be beset by spurious connections due to indirect impacts propagating through an unmapped biological network. For example, studies in macaques have shown that Bacillus Calmette-Guerin (BCG) vaccination by an intravenous route protects against tuberculosis, correlating with changes across various immune data modes. To eliminate spurious correlations and identify critical immune interactions in a public multi-modal dataset (systems serology, cytokines, and cytometry) of vaccinated macaques, we applied Markov fields (MFs), a data-driven approach that explains vaccine efficacy and immune correlations via multivariate network paths, without requiring large numbers of samples (i.e., macaques) relative to multivariate features. We find that integrating multiple data modes with MFs helps remove spurious connections. Finally, we used the MF to predict outcomes of perturbations at various immune nodes, including an experimentally validated B cell depletion that induced network-wide shifts without reducing vaccine protection.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell systemsPub Date : 2024-10-16DOI: 10.1016/j.cels.2024.09.009
Mengzhou Hu, Trey Ideker
{"title":"Putting proteins in context.","authors":"Mengzhou Hu, Trey Ideker","doi":"10.1016/j.cels.2024.09.009","DOIUrl":"https://doi.org/10.1016/j.cels.2024.09.009","url":null,"abstract":"<p><p>Proteins exhibit cell-type-specific functions and interactions, yet most ways of representing proteins lack any biological or environmental context. To address this gap, recent work by Li et al.<sup>1</sup> introduces PINNACLE, a geometric deep learning approach that generates contextualized representations of proteins by combined analysis of protein interactions and multiorgan single-cell transcriptomics.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell systemsPub Date : 2024-10-16DOI: 10.1016/j.cels.2024.09.007
Nittay Meroz, Tal Livny, Gal Toledano, Yael Sorokin, Nesli Tovi, Jonathan Friedman
{"title":"Evolution in microbial microcosms is highly parallel, regardless of the presence of interacting species.","authors":"Nittay Meroz, Tal Livny, Gal Toledano, Yael Sorokin, Nesli Tovi, Jonathan Friedman","doi":"10.1016/j.cels.2024.09.007","DOIUrl":"https://doi.org/10.1016/j.cels.2024.09.007","url":null,"abstract":"<p><p>Evolution often follows similar trajectories in replicate populations, suggesting that it may be predictable. However, populations are naturally embedded in multispecies communities, and the extent to which evolution is contingent on the specific species interacting with the focal population is still largely unexplored. Here, we study adaptations in strains of 11 different species, experimentally evolved both in isolation and in various pairwise co-cultures. Although partner-specific effects are detectable, evolution was mostly shared between strains evolved with different partners; similar changes occurred in strains' growth abilities, in community properties, and in about half of the repeatedly mutated genes. This pattern persisted even in species pre-adapted to the abiotic conditions. These findings indicate that evolution may not always depend strongly on the biotic environment, making predictions regarding coevolutionary dynamics less challenging than previously thought. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell systemsPub Date : 2024-10-16Epub Date: 2024-10-09DOI: 10.1016/j.cels.2024.09.002
Jianli Yin, Hang Wan, Deqiang Kong, Xingwan Liu, Ying Guan, Jiali Wu, Yang Zhou, Xiaoding Ma, Chunbo Lou, Haifeng Ye, Ningzi Guan
{"title":"A digital CRISPR-dCas9-based gene remodeling biocomputer programmed by dietary compounds in mammals.","authors":"Jianli Yin, Hang Wan, Deqiang Kong, Xingwan Liu, Ying Guan, Jiali Wu, Yang Zhou, Xiaoding Ma, Chunbo Lou, Haifeng Ye, Ningzi Guan","doi":"10.1016/j.cels.2024.09.002","DOIUrl":"10.1016/j.cels.2024.09.002","url":null,"abstract":"<p><p>CRISPR-dCas9 (dead Cas9 protein) technology, combined with chemical molecules and light-triggered genetic switches, offers customizable control over gene perturbation. However, these simple ON/OFF switches cannot precisely determine the sophisticated perturbation process. Here, we developed a resveratrol and protocatechuic acid-programmed CRISPR-mediated gene remodeling biocomputer (REPA<sub>CRISPR</sub>) for conditional endogenous transcriptional regulation of genes in vitro and in vivo. Two REPA<sub>CRISPR</sub> variants, REPA<sub>CRISPRi</sub> and REPA<sub>CRISPRa</sub>, were designed for the logic control of gene inhibition and activation, respectively. We successfully demonstrated the digital computations of single or multiplexed endogenous gene transcription by using REPA<sub>CRISPRa</sub>. We also established mathematical models to predict the dose-responsive transcriptional levels of a target endogenous gene controlled by REPA<sub>CRISPRa</sub>. Moreover, high levels of endogenous gene activation in mice mediated by the AND logic gate demonstrated computational control of CRISPR-dCas9-based epigenome remodeling in mice. This CRISPR-based biocomputer expands the synthetic biology toolbox and can potentially advance gene-based precision medicine. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell systemsPub Date : 2024-10-16Epub Date: 2024-10-07DOI: 10.1016/j.cels.2024.09.005
Lin Du, Jingmin Kang, Yong Hou, Hai-Xi Sun, Bohan Zhang
{"title":"SpotGF: Denoising spatially resolved transcriptomics data using an optimal transport-based gene filtering algorithm.","authors":"Lin Du, Jingmin Kang, Yong Hou, Hai-Xi Sun, Bohan Zhang","doi":"10.1016/j.cels.2024.09.005","DOIUrl":"10.1016/j.cels.2024.09.005","url":null,"abstract":"<p><p>Spatially resolved transcriptomics (SRT) combines gene expression profiles with the physical locations of cells in their native states but suffers from unpredictable spatial noise due to cell damage during cryosectioning and exposure to reagents for staining and mRNA release. To address this noise, we developed SpotGF, an algorithm for denoising SRT data using optimal transport-based gene filtering. SpotGF quantifies diffusion patterns numerically, distinguishing widespread expression genes from aggregated expression genes and filtering out the former as noise. Unlike conventional denoising methods, SpotGF preserves raw sequencing data, thereby avoiding false positives that can arise from imputation. Additionally, SpotGF demonstrates superior performance in cell clustering, identifying potential marker genes, and annotating cell types. Overall, SpotGF has the potential to become a crucial preprocessing step in the downstream analysis of SRT data. The SpotGF software is freely available at GitHub. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell systemsPub Date : 2024-10-16DOI: 10.1016/j.cels.2024.09.008
Zuodong Zhao, Bing Zhu
{"title":"Transcriptional memory formation: Battles between transcription factors and repressive chromatin.","authors":"Zuodong Zhao, Bing Zhu","doi":"10.1016/j.cels.2024.09.008","DOIUrl":"https://doi.org/10.1016/j.cels.2024.09.008","url":null,"abstract":"<p><p>Transcriptional memory allows cells to respond to previously experienced signals in a faster, stronger, and more sensitive manner. Using synthetic biology approaches, Fan and colleagues uncovered the critical interplays between transcription factors and repressive chromatin in consolidating transcriptional memory.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell systemsPub Date : 2024-10-16Epub Date: 2024-10-03DOI: 10.1016/j.cels.2024.09.003
Yuan Wang, William Thistlethwaite, Alicja Tadych, Frederique Ruf-Zamojski, Daniel J Bernard, Antonio Cappuccio, Elena Zaslavsky, Xi Chen, Stuart C Sealfon, Olga G Troyanskaya
{"title":"Automated single-cell omics end-to-end framework with data-driven batch inference.","authors":"Yuan Wang, William Thistlethwaite, Alicja Tadych, Frederique Ruf-Zamojski, Daniel J Bernard, Antonio Cappuccio, Elena Zaslavsky, Xi Chen, Stuart C Sealfon, Olga G Troyanskaya","doi":"10.1016/j.cels.2024.09.003","DOIUrl":"10.1016/j.cels.2024.09.003","url":null,"abstract":"<p><p>To facilitate single-cell multi-omics analysis and improve reproducibility, we present single-cell pipeline for end-to-end data integration (SPEEDI), a fully automated end-to-end framework for batch inference, data integration, and cell-type labeling. SPEEDI introduces data-driven batch inference and transforms the often heterogeneous data matrices obtained from different samples into a uniformly annotated and integrated dataset. Without requiring user input, it automatically selects parameters and executes pre-processing, sample integration, and cell-type mapping. It can also perform downstream analyses of differential signals between treatment conditions and gene functional modules. SPEEDI's data-driven batch-inference method works with widely used integration and cell-typing tools. By developing data-driven batch inference, providing full end-to-end automation, and eliminating parameter selection, SPEEDI improves reproducibility and lowers the barrier to obtaining biological insight from these valuable single-cell datasets. The SPEEDI interactive web application can be accessed at https://speedi.princeton.edu/. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell systemsPub Date : 2024-10-16DOI: 10.1016/j.cels.2024.09.011
Ziqi Zhang, Xiuwei Zhang
{"title":"Data-driven batch detection enhances single-cell omics data analysis.","authors":"Ziqi Zhang, Xiuwei Zhang","doi":"10.1016/j.cels.2024.09.011","DOIUrl":"https://doi.org/10.1016/j.cels.2024.09.011","url":null,"abstract":"<p><p>In single-cell omics studies, data are typically collected across multiple batches, resulting in batch effects: technical confounders that introduce noise and distort data distribution. Correcting these effects is challenging due to their unknown sources, nonlinear distortions, and the difficulty of accurately assigning data to batches that are optimal for integration methods.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell systemsPub Date : 2024-10-16DOI: 10.1016/j.cels.2024.09.010
Anna Weiss, Matti Gralka, Karoline Faust, David Basanta Gutierrez, Kenneth Pienta, Xu Zhou, Ophelia S Venturelli, Sean Gibbons, Mo Ebrahimkhani, Nika Shakiba, Shaohua Ma
{"title":"How can concepts from ecology enable insights about cellular communities?","authors":"Anna Weiss, Matti Gralka, Karoline Faust, David Basanta Gutierrez, Kenneth Pienta, Xu Zhou, Ophelia S Venturelli, Sean Gibbons, Mo Ebrahimkhani, Nika Shakiba, Shaohua Ma","doi":"10.1016/j.cels.2024.09.010","DOIUrl":"10.1016/j.cels.2024.09.010","url":null,"abstract":"","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}