Image2Reg:利用遗传和化学干扰屏幕将染色质图像与基因调控联系起来。

Daniel Paysan, Adityanarayanan Radhakrishnan, Xinyi Zhang, G V Shivashankar, Caroline Uhler
{"title":"Image2Reg:利用遗传和化学干扰屏幕将染色质图像与基因调控联系起来。","authors":"Daniel Paysan, Adityanarayanan Radhakrishnan, Xinyi Zhang, G V Shivashankar, Caroline Uhler","doi":"10.1016/j.cels.2025.101293","DOIUrl":null,"url":null,"abstract":"<p><p>Representation learning provides an opportunity to uncover the link between 3D genome organization and gene regulatory networks, thereby connecting the physical and the biochemical space of a cell. Our method, Image2Reg, uses chromatin images obtained in large-scale genetic and chemical perturbation screens. Through convolutional neural networks, Image2Reg generates gene embedding that represents the effect of gene perturbation on chromatin organization. In addition, combining protein-protein interaction data with cell-type-specific transcriptomic data through a graph convolutional network, we obtain a gene embedding that represents the regulatory effect of genes. Finally, Image2Reg learns a map between the resulting physical and biochemical representation of cells, allowing us to predict the perturbed gene modules based on chromatin images. Our results confirm the deep link between chromatin organization and gene regulation and demonstrate that it can be harnessed to identify drug targets and genes upstream of perturbed phenotypes from a simple and inexpensive chromatin staining.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101293"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image2Reg: Linking chromatin images to gene regulation using genetic and chemical perturbation screens.\",\"authors\":\"Daniel Paysan, Adityanarayanan Radhakrishnan, Xinyi Zhang, G V Shivashankar, Caroline Uhler\",\"doi\":\"10.1016/j.cels.2025.101293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Representation learning provides an opportunity to uncover the link between 3D genome organization and gene regulatory networks, thereby connecting the physical and the biochemical space of a cell. Our method, Image2Reg, uses chromatin images obtained in large-scale genetic and chemical perturbation screens. Through convolutional neural networks, Image2Reg generates gene embedding that represents the effect of gene perturbation on chromatin organization. In addition, combining protein-protein interaction data with cell-type-specific transcriptomic data through a graph convolutional network, we obtain a gene embedding that represents the regulatory effect of genes. Finally, Image2Reg learns a map between the resulting physical and biochemical representation of cells, allowing us to predict the perturbed gene modules based on chromatin images. Our results confirm the deep link between chromatin organization and gene regulation and demonstrate that it can be harnessed to identify drug targets and genes upstream of perturbed phenotypes from a simple and inexpensive chromatin staining.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101293\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

表征学习提供了一个机会来揭示三维基因组组织和基因调控网络之间的联系,从而连接细胞的物理和生化空间。我们的方法Image2Reg使用大规模遗传和化学扰动筛选获得的染色质图像。Image2Reg通过卷积神经网络生成基因嵌入,表示基因扰动对染色质组织的影响。此外,通过图卷积网络将蛋白-蛋白相互作用数据与细胞类型特异性转录组学数据相结合,我们获得了代表基因调控作用的基因嵌入。最后,Image2Reg学习了细胞的物理和生化表征之间的映射,使我们能够根据染色质图像预测受干扰的基因模块。我们的研究结果证实了染色质组织和基因调控之间的深层联系,并证明它可以利用简单而廉价的染色质染色来识别药物靶点和受干扰表型上游的基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image2Reg: Linking chromatin images to gene regulation using genetic and chemical perturbation screens.

Representation learning provides an opportunity to uncover the link between 3D genome organization and gene regulatory networks, thereby connecting the physical and the biochemical space of a cell. Our method, Image2Reg, uses chromatin images obtained in large-scale genetic and chemical perturbation screens. Through convolutional neural networks, Image2Reg generates gene embedding that represents the effect of gene perturbation on chromatin organization. In addition, combining protein-protein interaction data with cell-type-specific transcriptomic data through a graph convolutional network, we obtain a gene embedding that represents the regulatory effect of genes. Finally, Image2Reg learns a map between the resulting physical and biochemical representation of cells, allowing us to predict the perturbed gene modules based on chromatin images. Our results confirm the deep link between chromatin organization and gene regulation and demonstrate that it can be harnessed to identify drug targets and genes upstream of perturbed phenotypes from a simple and inexpensive chromatin staining.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信