利用PARAFAC2-RISE对不同实验条件下单细胞基因表达进行综合、高分辨率分析。

Andrew Ramirez, Brian T Orcutt-Jahns, Sean Pascoe, Armaan Abraham, Breanna Remigio, Nathaniel Thomas, Aaron S Meyer
{"title":"利用PARAFAC2-RISE对不同实验条件下单细胞基因表达进行综合、高分辨率分析。","authors":"Andrew Ramirez, Brian T Orcutt-Jahns, Sean Pascoe, Armaan Abraham, Breanna Remigio, Nathaniel Thomas, Aaron S Meyer","doi":"10.1016/j.cels.2025.101294","DOIUrl":null,"url":null,"abstract":"<p><p>Effective exploration and analysis tools are vital for the extraction of insights from single-cell data. However, current techniques for modeling single-cell studies performed across experimental conditions (e.g., samples) require restrictive assumptions or do not adequately deconvolute condition-to-condition variation from cell-to-cell variation. Here, we report that reduction and insight in single-cell exploration (RISE), an adaptation of the tensor decomposition method PARAFAC2, enables the dimensionality reduction and analysis of single-cell data across conditions. We demonstrate the benefits of RISE across distinct examples of single-cell RNA-sequencing experiments of peripheral immune cells: pharmacologic drug perturbations and systemic lupus erythematosus patient samples. RISE enables associations of gene variation patterns with patients or perturbations while connecting each coordinated change to single cells without requiring cell-type annotations. The theoretical grounding of RISE suggests a unified framework for many single-cell data modeling tasks while providing an intuitive dimensionality reduction approach for multi-sample single-cell studies across biological contexts. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101294"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative, high-resolution analysis of single-cell gene expression across experimental conditions with PARAFAC2-RISE.\",\"authors\":\"Andrew Ramirez, Brian T Orcutt-Jahns, Sean Pascoe, Armaan Abraham, Breanna Remigio, Nathaniel Thomas, Aaron S Meyer\",\"doi\":\"10.1016/j.cels.2025.101294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effective exploration and analysis tools are vital for the extraction of insights from single-cell data. However, current techniques for modeling single-cell studies performed across experimental conditions (e.g., samples) require restrictive assumptions or do not adequately deconvolute condition-to-condition variation from cell-to-cell variation. Here, we report that reduction and insight in single-cell exploration (RISE), an adaptation of the tensor decomposition method PARAFAC2, enables the dimensionality reduction and analysis of single-cell data across conditions. We demonstrate the benefits of RISE across distinct examples of single-cell RNA-sequencing experiments of peripheral immune cells: pharmacologic drug perturbations and systemic lupus erythematosus patient samples. RISE enables associations of gene variation patterns with patients or perturbations while connecting each coordinated change to single cells without requiring cell-type annotations. The theoretical grounding of RISE suggests a unified framework for many single-cell data modeling tasks while providing an intuitive dimensionality reduction approach for multi-sample single-cell studies across biological contexts. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有效的探索和分析工具对于从单细胞数据中提取见解至关重要。然而,目前用于模拟跨实验条件(例如,样品)进行的单细胞研究的技术需要限制性假设,或者不能充分地从细胞到细胞的变化中解卷积条件到条件的变化。在这里,我们报告了单细胞探索(RISE)中的降维和洞察,这是张量分解方法PARAFAC2的一种适应,可以在不同条件下对单细胞数据进行降维和分析。我们通过外周免疫细胞单细胞rna测序实验的不同例子证明了RISE的益处:药理学药物扰动和系统性红斑狼疮患者样本。RISE能够将基因变异模式与患者或扰动联系起来,同时将每个协调变化连接到单个细胞,而不需要细胞类型注释。RISE的理论基础为许多单细胞数据建模任务提供了一个统一的框架,同时为跨生物背景的多样本单细胞研究提供了一种直观的降维方法。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrative, high-resolution analysis of single-cell gene expression across experimental conditions with PARAFAC2-RISE.

Effective exploration and analysis tools are vital for the extraction of insights from single-cell data. However, current techniques for modeling single-cell studies performed across experimental conditions (e.g., samples) require restrictive assumptions or do not adequately deconvolute condition-to-condition variation from cell-to-cell variation. Here, we report that reduction and insight in single-cell exploration (RISE), an adaptation of the tensor decomposition method PARAFAC2, enables the dimensionality reduction and analysis of single-cell data across conditions. We demonstrate the benefits of RISE across distinct examples of single-cell RNA-sequencing experiments of peripheral immune cells: pharmacologic drug perturbations and systemic lupus erythematosus patient samples. RISE enables associations of gene variation patterns with patients or perturbations while connecting each coordinated change to single cells without requiring cell-type annotations. The theoretical grounding of RISE suggests a unified framework for many single-cell data modeling tasks while providing an intuitive dimensionality reduction approach for multi-sample single-cell studies across biological contexts. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信