Cell systems最新文献

筛选
英文 中文
Observations and implication of thermal tolerance in the Arabidopsis proteome. 拟南芥蛋白质组耐热性的观察和意义。
Cell systems Pub Date : 2023-10-18 DOI: 10.1016/j.cels.2023.09.001
Alisdair R Fernie, Youjun Zhang
{"title":"Observations and implication of thermal tolerance in the Arabidopsis proteome.","authors":"Alisdair R Fernie, Youjun Zhang","doi":"10.1016/j.cels.2023.09.001","DOIUrl":"10.1016/j.cels.2023.09.001","url":null,"abstract":"<p><p>Knowledge of the thermal stability of plant proteomes within their native environments would aid in the design of climate-resilient crop plants. Identification of thermo-sensitive and -resilient proteins not only provides foundational understanding of systematic heat-induced damage but also offers insight into protein interactions and protein evolution.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49686337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promotion of plasmid maintenance by heterogeneous partitioning of microbial communities. 通过微生物群落的异质分配促进质粒维持。
Cell systems Pub Date : 2023-10-18 Epub Date: 2023-10-10 DOI: 10.1016/j.cels.2023.09.002
Andrea Weiss, Teng Wang, Lingchong You
{"title":"Promotion of plasmid maintenance by heterogeneous partitioning of microbial communities.","authors":"Andrea Weiss, Teng Wang, Lingchong You","doi":"10.1016/j.cels.2023.09.002","DOIUrl":"10.1016/j.cels.2023.09.002","url":null,"abstract":"<p><p>Transferable plasmids play a critical role in shaping the functions of microbial communities. Previous studies suggested multiple mechanisms underlying plasmid persistence and abundance. Here, we focus on the interplay between heterogeneous community partitioning and plasmid fates. Natural microbiomes often experience partitioning that creates heterogeneous local communities with reduced population sizes and biodiversity. Little is known about how population partitioning affects the plasmid fate through the modulation of community structure. By modeling and experiments, we show that heterogeneous community partitioning can paradoxically promote the persistence of a plasmid that would otherwise not persist in a global community. Among the local communities created by partitioning, a minority will primarily consist of members able to transfer the plasmid fast enough to support its maintenance by serving as a local plasmid haven. Our results provide insights into plasmid maintenance and suggest a generalizable approach to modulate plasmid persistence for engineering and medical applications.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41223583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic footprinting uncovers global transcription factor responses to amino acids in Escherichia coli. 基因组足迹揭示了大肠杆菌对氨基酸的全局转录因子反应。
Cell systems Pub Date : 2023-10-18 Epub Date: 2023-10-10 DOI: 10.1016/j.cels.2023.09.003
Julian Trouillon, Peter F Doubleday, Uwe Sauer
{"title":"Genomic footprinting uncovers global transcription factor responses to amino acids in Escherichia coli.","authors":"Julian Trouillon, Peter F Doubleday, Uwe Sauer","doi":"10.1016/j.cels.2023.09.003","DOIUrl":"10.1016/j.cels.2023.09.003","url":null,"abstract":"<p><p>Our knowledge of transcriptional responses to changes in nutrient availability comes primarily from few well-studied transcription factors (TFs), often lacking an unbiased genome-wide perspective. Leveraging recent advances allowing bacterial genomic footprinting, we comprehensively mapped the genome-wide regulatory responses of Escherichia coli to exogenous leucine, methionine, alanine, and lysine. The global TF Lrp was found to individually sense three amino acids and mount three different target gene responses. Overall, 531 genes had altered RNA polymerase occupancy, and 32 TFs responded directly or indirectly to the presence of amino acids, including regulators of membrane and osmotic pressure homeostasis. About 70% of the detected TF-DNA interactions had not been reported before. We thus identified 682 previously unknown TF-binding locations, for a subset of which the involved TFs were identified by affinity purification. This comprehensive map of amino acid regulation illustrates the incompleteness of the known transcriptional regulation network, even in E. coli.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41223582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volumetric compression by heterogeneous scaffold embedding promotes cerebral organoid maturation and does not impede growth. 异质性支架包埋的体积压缩促进大脑类器官成熟,不会阻碍生长。
Cell systems Pub Date : 2023-10-18 Epub Date: 2023-10-10 DOI: 10.1016/j.cels.2023.09.004
Xiaowei Tang, Zitian Wang, Davit Khutsishvili, Yifan Cheng, Jiaqi Wang, Jiyuan Tang, Shaohua Ma
{"title":"Volumetric compression by heterogeneous scaffold embedding promotes cerebral organoid maturation and does not impede growth.","authors":"Xiaowei Tang, Zitian Wang, Davit Khutsishvili, Yifan Cheng, Jiaqi Wang, Jiyuan Tang, Shaohua Ma","doi":"10.1016/j.cels.2023.09.004","DOIUrl":"10.1016/j.cels.2023.09.004","url":null,"abstract":"<p><p>Although biochemical regulation has been extensively studied in organoid modeling protocols, the role of mechanoregulation in directing stem cell fate and organoid development has been relatively unexplored. To accurately replicate the dynamic organoid development observed in nature, in this study, we present a method of heterogeneous embedding using an alginate-shell-Matrigel-core system. This approach allows for cell-Matrigel remodeling by the inner layer and provides short-term moderate-normal compression through the soft alginate outer layer. Our results show that the time-limited confinement contributes to increased expression of neuronal markers such as neurofilament (NF) and microtubule-associated protein 2 (MAP2). Compared with non-alginate embedding and alginate compression groups, volume growth remains unimpeded. Our findings demonstrate the temporary mechanical regulation of cerebral organoid growth, which exhibits a regular growth profile with enhanced maturation. These results highlight the importance and potential practical applications of mechanoregulation in the establishment of brain organoids. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41223584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide measurement of RNA dissociation from chromatin classifies transcripts by their dynamics and reveals rapid dissociation of enhancer lncRNAs. RNA从染色质解离的全基因组测量通过其动力学对转录物进行分类,并揭示增强子lncRNA的快速解离。
Cell systems Pub Date : 2023-10-18 DOI: 10.1016/j.cels.2023.09.005
Evgenia Ntini, Stefan Budach, Ulf A Vang Ørom, Annalisa Marsico
{"title":"Genome-wide measurement of RNA dissociation from chromatin classifies transcripts by their dynamics and reveals rapid dissociation of enhancer lncRNAs.","authors":"Evgenia Ntini, Stefan Budach, Ulf A Vang Ørom, Annalisa Marsico","doi":"10.1016/j.cels.2023.09.005","DOIUrl":"10.1016/j.cels.2023.09.005","url":null,"abstract":"<p><p>Long non-coding RNAs (lncRNAs) are involved in gene expression regulation in cis. Although enriched in the cell chromatin fraction, to what degree this defines their regulatory potential remains unclear. Furthermore, the factors underlying lncRNA chromatin tethering, as well as the molecular basis of efficient lncRNA chromatin dissociation and its impact on enhancer activity and target gene expression, remain to be resolved. Here, we developed chrTT-seq, which combines the pulse-chase metabolic labeling of nascent RNA with chromatin fractionation and transient transcriptome sequencing to follow nascent RNA transcripts from their transcription on chromatin to release and allows the quantification of dissociation dynamics. By incorporating genomic, transcriptomic, and epigenetic metrics, as well as RNA-binding protein propensities, in machine learning models, we identify features that define transcript groups of different chromatin dissociation dynamics. Notably, lncRNAs transcribed from enhancers display reduced chromatin retention, suggesting that, in addition to splicing, their chromatin dissociation may shape enhancer activity.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49686336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A microwell platform for high-throughput longitudinal phenotyping and selective retrieval of organoids. 用于类器官的高通量纵向表型和选择性检索的微孔平台。
Cell systems Pub Date : 2023-09-20 DOI: 10.1016/j.cels.2023.08.002
Alexandra Sockell, Wing Wong, Scott Longwell, Thy Vu, Kasper Karlsson, Daniel Mokhtari, Julia Schaepe, Yuan-Hung Lo, Vincent Cornelius, Calvin Kuo, David Van Valen, Christina Curtis, Polly M Fordyce
{"title":"A microwell platform for high-throughput longitudinal phenotyping and selective retrieval of organoids.","authors":"Alexandra Sockell,&nbsp;Wing Wong,&nbsp;Scott Longwell,&nbsp;Thy Vu,&nbsp;Kasper Karlsson,&nbsp;Daniel Mokhtari,&nbsp;Julia Schaepe,&nbsp;Yuan-Hung Lo,&nbsp;Vincent Cornelius,&nbsp;Calvin Kuo,&nbsp;David Van Valen,&nbsp;Christina Curtis,&nbsp;Polly M Fordyce","doi":"10.1016/j.cels.2023.08.002","DOIUrl":"10.1016/j.cels.2023.08.002","url":null,"abstract":"<p><p>Organoids are powerful experimental models for studying the ontogeny and progression of various diseases including cancer. Organoids are conventionally cultured in bulk using an extracellular matrix mimic. However, bulk-cultured organoids physically overlap, making it impossible to track the growth of individual organoids over time in high throughput. Moreover, local spatial variations in bulk matrix properties make it difficult to assess whether observed phenotypic heterogeneity between organoids results from intrinsic cell differences or differences in the microenvironment. Here, we developed a microwell-based method that enables high-throughput quantification of image-based parameters for organoids grown from single cells, which can further be retrieved from their microwells for molecular profiling. Coupled with a deep learning image-processing pipeline, we characterized phenotypic traits including growth rates, cellular movement, and apical-basal polarity in two CRISPR-engineered human gastric organoid models, identifying genomic changes associated with increased growth rate and changes in accessibility and expression correlated with apical-basal polarity. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41108086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What cannot be seen correctly in 2D visualizations of single-cell 'omics data? 在单细胞组学数据的2D可视化中不能正确看到什么?
Cell systems Pub Date : 2023-09-20 DOI: 10.1016/j.cels.2023.07.002
Shu Wang, Eduardo D Sontag, Douglas A Lauffenburger
{"title":"What cannot be seen correctly in 2D visualizations of single-cell 'omics data?","authors":"Shu Wang, Eduardo D Sontag, Douglas A Lauffenburger","doi":"10.1016/j.cels.2023.07.002","DOIUrl":"10.1016/j.cels.2023.07.002","url":null,"abstract":"<p><p>A common strategy for exploring single-cell 'omics data is visualizing 2D nonlinear projections that aim to preserve high-dimensional data properties such as neighborhoods. Alternatively, mathematical theory and other computational tools can directly describe data geometry, while also showing that neighborhoods and other properties cannot be well-preserved in any 2D projection.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41180704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ligand-receptor promiscuity enables cellular addressing. 配体-受体杂交使细胞能够寻址。
Cell systems Pub Date : 2022-05-18 Epub Date: 2022-04-13 DOI: 10.1016/j.cels.2022.03.001
Christina J Su, Arvind Murugan, James M Linton, Akshay Yeluri, Justin Bois, Heidi Klumpe, Matthew A Langley, Yaron E Antebi, Michael B Elowitz
{"title":"Ligand-receptor promiscuity enables cellular addressing.","authors":"Christina J Su, Arvind Murugan, James M Linton, Akshay Yeluri, Justin Bois, Heidi Klumpe, Matthew A Langley, Yaron E Antebi, Michael B Elowitz","doi":"10.1016/j.cels.2022.03.001","DOIUrl":"10.1016/j.cels.2022.03.001","url":null,"abstract":"<p><p>In multicellular organisms, secreted ligands selectively activate, or \"address,\" specific target cell populations to control cell fate decision-making and other processes. Key cell-cell communication pathways use multiple promiscuously interacting ligands and receptors, provoking the question of how addressing specificity can emerge from molecular promiscuity. To investigate this issue, we developed a general mathematical modeling framework based on the bone morphogenetic protein (BMP) pathway architecture. We find that promiscuously interacting ligand-receptor systems allow a small number of ligands, acting in combinations, to address a larger number of individual cell types, defined by their receptor expression profiles. Promiscuous systems outperform seemingly more specific one-to-one signaling architectures in addressing capability. Combinatorial addressing extends to groups of cell types, is robust to receptor expression noise, grows more powerful with increases in the number of receptor variants, and is maximized by specific biochemical parameter relationships. Together, these results identify design principles governing cellular addressing by ligand combinations.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139699134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoupling of Rates of Protein Synthesis from Cell Expansion Leads to Supergrowth. 蛋白质合成速率与细胞扩增的解耦导致超生长。
Cell systems Pub Date : 2019-11-27 Epub Date: 2019-11-06 DOI: 10.1016/j.cels.2019.10.001
Benjamin D Knapp, Pascal Odermatt, Enrique R Rojas, Wenpeng Cheng, Xiangwei He, Kerwyn Casey Huang, Fred Chang
{"title":"Decoupling of Rates of Protein Synthesis from Cell Expansion Leads to Supergrowth.","authors":"Benjamin D Knapp,&nbsp;Pascal Odermatt,&nbsp;Enrique R Rojas,&nbsp;Wenpeng Cheng,&nbsp;Xiangwei He,&nbsp;Kerwyn Casey Huang,&nbsp;Fred Chang","doi":"10.1016/j.cels.2019.10.001","DOIUrl":"https://doi.org/10.1016/j.cels.2019.10.001","url":null,"abstract":"<p><p>Cell growth is a complex process in which cells synthesize cellular components while they increase in size. It is generally assumed that the rate of biosynthesis must somehow be coordinated with the rate of growth in order to maintain intracellular concentrations. However, little is known about potential feedback mechanisms that could achieve proteome homeostasis or the consequences when this homeostasis is perturbed. Here, we identify conditions in which fission yeast cells are prevented from volume expansion but nevertheless continue to synthesize biomass, leading to general accumulation of proteins and increased cytoplasmic density. Upon removal of these perturbations, this biomass accumulation drove cells to undergo a multi-generational period of \"supergrowth\" wherein rapid volume growth outpaced biosynthesis, returning proteome concentrations back to normal within hours. These findings demonstrate a mechanism for global proteome homeostasis based on modulation of volume growth and dilution.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cels.2019.10.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49686271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correcting the Mean-Variance Dependency for Differential Variability Testing Using Single-Cell RNA Sequencing Data. 利用单细胞 RNA 测序数据校正差异变异性测试的均方差依赖性
Cell systems Pub Date : 2019-10-23 DOI: 10.1016/j.cels.2019.08.003
Nils Eling, Arianne C Richard, Sylvia Richardson, John C Marioni, Catalina A Vallejos
{"title":"Correcting the Mean-Variance Dependency for Differential Variability Testing Using Single-Cell RNA Sequencing Data.","authors":"Nils Eling, Arianne C Richard, Sylvia Richardson, John C Marioni, Catalina A Vallejos","doi":"10.1016/j.cels.2019.08.003","DOIUrl":"https://doi.org/10.1016/j.cels.2019.08.003","url":null,"abstract":"","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139731233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信