Protein turnover regulation is critical for influenza A virus infection.

Cell systems Pub Date : 2024-10-16 Epub Date: 2024-10-04 DOI:10.1016/j.cels.2024.09.004
Yiqi Huang, Christian Urban, Philipp Hubel, Alexey Stukalov, Andreas Pichlmair
{"title":"Protein turnover regulation is critical for influenza A virus infection.","authors":"Yiqi Huang, Christian Urban, Philipp Hubel, Alexey Stukalov, Andreas Pichlmair","doi":"10.1016/j.cels.2024.09.004","DOIUrl":null,"url":null,"abstract":"<p><p>The abundance of a protein is defined by its continuous synthesis and degradation, a process known as protein turnover. Here, we systematically profiled the turnover of proteins in influenza A virus (IAV)-infected cells using a pulse-chase stable isotope labeling by amino acids in cell culture (SILAC)-based approach combined with downstream statistical modeling. We identified 1,798 virus-affected proteins with turnover changes (tVAPs) out of 7,739 detected proteins (data available at pulsechase.innatelab.org). In particular, the affected proteins were involved in RNA transcription, splicing and nuclear transport, protein translation and stability, and energy metabolism. Many tVAPs appeared to be known IAV-interacting proteins that regulate virus propagation, such as KPNA6, PPP6C, and POLR2A. Notably, our analysis identified additional IAV host and restriction factors, such as the splicing factor GPKOW, that exhibit significant turnover rate changes while their total abundance is minimally affected. Overall, we show that protein turnover is a critical factor both for virus replication and antiviral defense.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"911-929.e8"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.09.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The abundance of a protein is defined by its continuous synthesis and degradation, a process known as protein turnover. Here, we systematically profiled the turnover of proteins in influenza A virus (IAV)-infected cells using a pulse-chase stable isotope labeling by amino acids in cell culture (SILAC)-based approach combined with downstream statistical modeling. We identified 1,798 virus-affected proteins with turnover changes (tVAPs) out of 7,739 detected proteins (data available at pulsechase.innatelab.org). In particular, the affected proteins were involved in RNA transcription, splicing and nuclear transport, protein translation and stability, and energy metabolism. Many tVAPs appeared to be known IAV-interacting proteins that regulate virus propagation, such as KPNA6, PPP6C, and POLR2A. Notably, our analysis identified additional IAV host and restriction factors, such as the splicing factor GPKOW, that exhibit significant turnover rate changes while their total abundance is minimally affected. Overall, we show that protein turnover is a critical factor both for virus replication and antiviral defense.

蛋白质周转调节对甲型流感病毒感染至关重要。
蛋白质的丰度是由其不断合成和降解决定的,这一过程被称为蛋白质周转。在这里,我们采用基于细胞培养中氨基酸脉冲追逐稳定同位素标记(SILAC)的方法,并结合下游统计建模,系统地分析了甲型流感病毒(IAV)感染细胞中蛋白质的周转情况。在 7739 个检测到的蛋白质中,我们发现了 1798 个受病毒影响而发生周转变化的蛋白质(tVAPs)(数据可在 pulsechase.innatelab.org 上获取)。受影响的蛋白质主要涉及 RNA 转录、剪接和核转运、蛋白质翻译和稳定性以及能量代谢。许多 tVAPs 似乎是已知的 IAV 相互作用蛋白,如 KPNA6、PPP6C 和 POLR2A,它们能调节病毒的传播。值得注意的是,我们的分析还发现了其他 IAV 宿主因子和限制因子,如剪接因子 GPKOW,它们的周转率变化显著,而其总丰度受到的影响却很小。总之,我们的研究表明,蛋白质周转是病毒复制和抗病毒防御的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信