Riccardo Aucello, Simone Pernice, Dora Tortarolo, Raffaele A Calogero, Celia Herrera-Rincon, Giulia Ronchi, Stefano Geuna, Francesca Cordero, Pietro Lió, Marco Beccuti
{"title":"UnifiedGreatMod: A New Holistic Modelling Paradigm for Studying Biological Systems on a Complete and Harmonious Scale.","authors":"Riccardo Aucello, Simone Pernice, Dora Tortarolo, Raffaele A Calogero, Celia Herrera-Rincon, Giulia Ronchi, Stefano Geuna, Francesca Cordero, Pietro Lió, Marco Beccuti","doi":"10.1093/bioinformatics/btaf103","DOIUrl":"https://doi.org/10.1093/bioinformatics/btaf103","url":null,"abstract":"<p><strong>Motivation: </strong>Computational models are crucial for addressing critical questions about systems evolution and deciphering system connections. The pivotal feature of making this concept recognisable from the biological and clinical community is the possibility of quickly inspecting the whole system, bearing in mind the different granularity levels of its components. This holistic view of system behaviour expands the evolution study by identifying the heterogeneous behaviours applicable, for example, to the cancer evolution study.</p><p><strong>Results: </strong>To address this aspect, we propose a new modelling paradigm, UnifiedGreatMod, which allows modellers to integrate fine-grained and coarse-grained biological information into a unique model. It enables functional studies by combining the analysis of the system's multi-level stable states with its fluctuating conditions. This approach helps to investigate the functional relationships and dependencies among biological entities. This is achieved thanks to the hybridisation of two analysis approaches that capture a system's different granularity levels. The proposed paradigm was then implemented into the open-source, general modelling framework GreatMod, in which a graphical meta-formalism is exploited to simplify the model creation phase and R languages to define user-defined analysis workflows. The proposal's effectiveness was demonstrated by mechanistically simulating the metabolic output of Echerichia coli under environmental nutrient perturbations and integrating a gene expression dataset. Additionally, the UnifiedGreatMod was used to examine the responses of luminal epithelial cells to Clostridium difficile infection.</p><p><strong>Availability: </strong>GreatMod https://qbioturin.github.io/epimod/, epimod_FBAfunctions https://github.com/qBioTurin/epimod_FBAfunctions, first case study E.coli https://github.com/qBioTurin/Ec_coli_modelling, second case study C. difficile https://github.com/qBioTurin/EpiCell_CDifficile.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143617971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PopGLen-A Snakemake pipeline for performing population genomic analyses using genotype likelihood-based methods.","authors":"Zachary J Nolen","doi":"10.1093/bioinformatics/btaf105","DOIUrl":"https://doi.org/10.1093/bioinformatics/btaf105","url":null,"abstract":"<p><strong>Summary: </strong>PopGLen is a Snakemake workflow for performing population genomic analyses within a genotype-likelihood framework, integrating steps for raw sequence processing of both historical and modern DNA, quality control, multiple filtering schemes, and population genomic analysis. Currently, the population genomic analyses included allow for estimating linkage disequilibrium, kinship, genetic diversity, genetic differentiation, population structure, inbreeding, and allele frequencies. Through Snakemake, it is highly scalable, and all steps of the workflow are automated, with results compiled into an HTML report. PopGLen provides an efficient, customizable, and reproducible option for analyzing population genomic datasets across a wide variety of organisms.</p><p><strong>Availability and implementation: </strong>PopGLen is available under GPLv3 with code, documentation, and a tutorial at https://github.com/zjnolen/PopGLen. An example HTML report using the tutorial dataset is included in the supplementary material.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143607426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steve Broll, Sumanta Basu, Myung Hee Lee, Martin T Wells
{"title":"PROLONG: Penalized Regression for Outcome guided Longitudinal Omics analysis with Network and Group constraints.","authors":"Steve Broll, Sumanta Basu, Myung Hee Lee, Martin T Wells","doi":"10.1093/bioinformatics/btaf099","DOIUrl":"https://doi.org/10.1093/bioinformatics/btaf099","url":null,"abstract":"<p><strong>Motivation: </strong>There is a growing interest in longitudinal omics data paired with some longitudinal clinical outcome. Given a large set of continuous omics variables and some continuous clinical outcome, each measured for a few subjects at only a few time points, we seek to identify those variables that co-vary over time with the outcome. To motivate this problem we study a dataset with hundreds of urinary metabolites along with Tuberculosis mycobacterial load as our clinical outcome, with the objective of identifying potential biomarkers for disease progression. For such data clinicians usually apply simple linear mixed effects models which often lack power given the low number of replicates and time points. We propose a penalized regression approach on the first differences of the data that extends the lasso + Laplacian method (Li and Li 2008) to a longitudinal group lasso + Laplacian approach. Our method, PROLONG, leverages the first differences of the data to increase power by pairing the consecutive time points. The Laplacian penalty incorporates the dependence structure of the variables, and the group lasso penalty induces sparsity while grouping together all contemporaneous and lag terms for each omic variable in the model.</p><p><strong>Results: </strong>With an automated selection of model hyper-parameters, PROLONG correctly selects target metabolites with high specificity and sensitivity across a wide range of scenarios. PROLONG selects a set of metabolites from the real data that includes interesting targets identified during EDA.</p><p><strong>Availability: </strong>An R package implementing described methods called 'prolong'is available at https://github.com/stevebroll/prolong. Code snapshot available at 10.5281/zenodo.14804245.</p><p><strong>Conclusions: </strong>PROLONG is a powerful method for selecting potential biomarkers in high dimensional longitudinal omics data that co-vary with some continuous clinical outcome.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143576000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G Leoni, M Petrillo, V Ruiz Serra, M Querci, S Coecke, T Wiesenthal
{"title":"PathoSeq-QC: a decision support bioinformatics workflow for robust genomic surveillance.","authors":"G Leoni, M Petrillo, V Ruiz Serra, M Querci, S Coecke, T Wiesenthal","doi":"10.1093/bioinformatics/btaf102","DOIUrl":"https://doi.org/10.1093/bioinformatics/btaf102","url":null,"abstract":"<p><strong>Motivation: </strong>Recommendations on the use of genomics for pathogens surveillance are evidence that high-throughput genomic sequencing plays a key role to fight global health threats. Coupled with bioinformatics and other data types (e.g., epidemiological information), genomics is used to obtain knowledge on health pathogenic threats and insights on their evolution, to monitor pathogens spread, and to evaluate the effectiveness of countermeasures. From a decision-making policy perspective, it is essential to ensure the entire process's quality before relying on analysis results as evidence. Available workflows usually offer quality assessment tools that are primarily focused on the quality of raw NGS reads but often struggle to keep pace with new technologies and threats, and fail to provide a robust consensus on results, necessitating manual evaluation of multiple tool outputs.</p><p><strong>Results: </strong>We present PathoSeq-QC, a bioinformatics decision support workflow developed to improve the trustworthiness of genomic surveillance analyses and conclusions. Designed for SARS-CoV-2, it is suitable for any viral threat. In the specific case of SARS-CoV-2, PathoSeq-QC: i) evaluates the quality of the raw data; ii) assesses whether the analysed sample is composed by single or multiple lineages; iii) produces robust variant calling results via multi-tool comparison; iv) reports whether the produced data are in support of a recombinant virus, a novel or an already known lineage. The tool is modular, which will allow easy functionalities extension.</p><p><strong>Availability: </strong>PathoSeq-QC is a command-line tool written in Python and R. The code is available at https://code.europa.eu/dighealth/pathoseq-qc.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143575872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vcfgl: A flexible genotype likelihood simulator for VCF/BCF files.","authors":"Isin Altinkaya, Rasmus Nielsen, Thorfinn Sand Korneliussen","doi":"10.1093/bioinformatics/btaf098","DOIUrl":"https://doi.org/10.1093/bioinformatics/btaf098","url":null,"abstract":"<p><strong>Motivation: </strong>Accurate quantification of genotype uncertainty is pivotal in ensuring the reliability of genetic inferences drawn from NGS data. Genotype uncertainty is typically modeled using Genotype Likelihoods (GLs), which can help propagate measures of statistical uncertainty in base calls to downstream analyses. However, the effects of errors and biases in the estimation of GLs, introduced by biases in the original base call quality scores or the discretization of quality scores, as well as the choice of the GL model, remain under-explored.</p><p><strong>Results: </strong>We present vcfgl, a versatile tool for simulating genotype likelihoods associated with simulated read data. It offers a framework for researchers to simulate and investigate the uncertainties and biases associated with the quantification of uncertainty, thereby facilitating a deeper understanding of their impacts on downstream analytical methods. Through simulations, we demonstrate the utility of vcfgl in benchmarking GL-based methods. The program can calculate GLs using various widely used genotype likelihood models and can simulate the errors in quality scores using a Beta distribution. It is compatible with modern simulators such as msprime and SLiM, and can output data in pileup, VCF/BCF and gVCF file formats, supporting a wide range of applications. The vcfgl program is freely available as an efficient and user-friendly software written in C/C ++.</p><p><strong>Availability: </strong>vcfgl is freely available at https://github.com/isinaltinkaya/vcfgl.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143568841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scupa: single-cell unified polarization assessment of immune cells using the single-cell foundation model.","authors":"Wendao Liu, Zhongming Zhao","doi":"10.1093/bioinformatics/btaf090","DOIUrl":"10.1093/bioinformatics/btaf090","url":null,"abstract":"<p><strong>Motivation: </strong>Immune cells undergo cytokine-driven polarization in response to diverse stimuli, altering their transcriptional profiles and functional states. This dynamic process is central to immune responses in health and diseases, yet a systematic approach to assess cytokine-driven polarization in single-cell RNA sequencing data has been lacking.</p><p><strong>Results: </strong>To address this gap, we developed single-cell unified polarization assessment (Scupa), the first computational method for comprehensive immune cell polarization assessment. Scupa leverages data from the Immune Dictionary, which characterizes cytokine-driven polarization states across 14 immune cell types. By integrating cell embeddings from the single-cell foundation model Universal Cell Embeddings, Scupa effectively identifies polarized cells across different species and experimental conditions. Applications of Scupa in independent datasets demonstrated its accuracy in classifying polarized cells and further revealed distinct polarization profiles in tumor-infiltrating myeloid cells across cancers. Scupa complements conventional single-cell data analysis by providing new insights into dynamic immune cell states, and holds potential for advancing therapeutic insights, particularly in cytokine-based therapies.</p><p><strong>Availability and implementation: </strong>The code is available at https://github.com/bsml320/Scupa.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143506727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient storage and regression computation for population-scale genome sequencing studies.","authors":"Manuel A Rivas, Christopher Chang","doi":"10.1093/bioinformatics/btaf067","DOIUrl":"10.1093/bioinformatics/btaf067","url":null,"abstract":"<p><strong>Motivation: </strong>The growing availability of large-scale population biobanks has the potential to significantly advance our understanding of human health and disease. However, the massive computational and storage demands of whole genome sequencing (WGS) data pose serious challenges, particularly for underfunded institutions or researchers in developing countries. This disparity in resources can limit equitable access to cutting-edge genetic research.</p><p><strong>Results: </strong>We present novel algorithms and regression methods that dramatically reduce both computation time and storage requirements for WGS studies, with particular attention to rare variant representation. By integrating these approaches into PLINK 2.0, we demonstrate substantial gains in efficiency without compromising analytical accuracy. In an exome-wide association analysis of 19.4 million variants for the body mass index phenotype in 125 077 individuals (AllofUs project data), we reduced runtime from 695.35 min (11.5 h) on a single machine to 1.57 min with 30 GB of memory and 50 threads (or 8.67 min with 4 threads). Additionally, the framework supports multi-phenotype analyses, further enhancing its flexibility.</p><p><strong>Availability and implementation: </strong>Our optimized methods are fully integrated into PLINK 2.0 and can be accessed at: https://www.cog-genomics.org/plink/2.0/.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ross F Laidlaw, Emma M Briggs, Keith R Matthews, Amir Madany Mamlouk, Richard McCulloch, Thomas D Otto
{"title":"TrAGEDy-trajectory alignment of gene expression dynamics.","authors":"Ross F Laidlaw, Emma M Briggs, Keith R Matthews, Amir Madany Mamlouk, Richard McCulloch, Thomas D Otto","doi":"10.1093/bioinformatics/btaf073","DOIUrl":"10.1093/bioinformatics/btaf073","url":null,"abstract":"<p><strong>Motivation: </strong>Single-cell transcriptomics sequencing is used to compare different biological processes. However, often, those processes are asymmetric which are difficult to integrate. Current approaches often rely on integrating samples from each condition before either cluster-based comparisons or analysis of an inferred shared trajectory.</p><p><strong>Results: </strong>We present Trajectory Alignment of Gene Expression Dynamics (TrAGEDy), which allows the alignment of independent trajectories to avoid the need for error-prone integration steps. Across simulated datasets, TrAGEDy returns the correct underlying alignment of the datasets, outperforming current tools which fail to capture the complexity of asymmetric alignments. When applied to real datasets, TrAGEDy captures more biologically relevant genes and processes, which other differential expression methods fail to detect when looking at the developments of T cells and the bloodstream forms of Trypanosoma brucei when affected by genetic knockouts.</p><p><strong>Availability and implementation: </strong>TrAGEDy is freely available at https://github.com/No2Ross/TrAGEDy, and implemented in R.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143598504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonino Zito, Axel Martinelli, Mauro Masiero, Murodzhon Akhmedov, Ivo Kwee
{"title":"NPM: latent batch effects correction of omics data by nearest-pair matching.","authors":"Antonino Zito, Axel Martinelli, Mauro Masiero, Murodzhon Akhmedov, Ivo Kwee","doi":"10.1093/bioinformatics/btaf084","DOIUrl":"10.1093/bioinformatics/btaf084","url":null,"abstract":"<p><strong>Motivation: </strong>Batch effects (BEs) are a predominant source of noise in omics data and often mask real biological signals. BEs remain common in existing datasets. Current methods for BE correction mostly rely on specific assumptions or complex models, and may not detect and adjust BEs adequately, impacting downstream analysis and discovery power. To address these challenges we developed NPM, a nearest-neighbor matching-based method that adjusts BEs and may outperform other methods in a wide range of datasets.</p><p><strong>Results: </strong>We assessed distinct metrics and graphical readouts, and compared our method to commonly used BE correction methods. NPM demonstrates the ability in correcting for BEs, while preserving biological differences. It may outperform other methods based on multiple metrics. Altogether, NPM proves to be a valuable BE correction approach to maximize discovery in biomedical research, with applicability in clinical research where latent BEs are often dominant.</p><p><strong>Availability and implementation: </strong>NPM is freely available on GitHub (https://github.com/bigomics/NPM) and on Omics Playground (https://bigomics.ch/omics-playground). Computer codes for analyses are available at (https://github.com/bigomics/NPM). The datasets underlying this article are the following: GSE120099, GSE82177, GSE162760, GSE171343, GSE153380, GSE163214, GSE182440, GSE163857, GSE117970, GSE173078, and GSE10846. All these datasets are publicly available and can be freely accessed on the Gene Expression Omnibus repository.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143506726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanxin Jiao, Hongjia Li, Yang Xue, Guoliang Yang, Lei Qi, Fa Zhang, Dawei Zang, Renmin Han
{"title":"TiltRec: an ultra-fast and open-source toolkit for cryo-electron tomographic reconstruction.","authors":"Yanxin Jiao, Hongjia Li, Yang Xue, Guoliang Yang, Lei Qi, Fa Zhang, Dawei Zang, Renmin Han","doi":"10.1093/bioinformatics/btaf068","DOIUrl":"10.1093/bioinformatics/btaf068","url":null,"abstract":"<p><strong>Motivation: </strong>Cryo-electron tomography (cryo-ET) has revolutionized our ability to observe structures from the subcellular to the atomic level in their native states. Achieving high-resolution reconstruction involves collecting tilt series at different angles and subsequently backprojecting them into 3D space or iteratively reconstructing them to build a 3D volume of the specimen. However, the intricate computational demands of tomographic reconstruction pose significant challenges, requiring extensive calculation times that hinder efficiency, especially with large and complex datasets.</p><p><strong>Results: </strong>We present TiltRec, an open-source toolkit that leverages the parallel capabilities of Central Processing Units and Graphics Processing Units to enhance tomographic reconstruction. TiltRec implements six classical tomographic reconstruction algorithms, utilizing optimized parallel computation strategies and advanced memory management techniques. Performance evaluations across multiple datasets of varying sizes demonstrate that TiltRec significantly improves efficiency, reducing computational times while maintaining reconstruction resolution.</p><p><strong>Summary: </strong>TiltRec effectively addresses the computational challenges associated with cryo-ET reconstruction by fully exploiting parallel acceleration. As an open-source tool, TiltRec not only facilitates extensive applications by the research community but also supports further algorithm modifications and extensions, enabling the continued development of novel algorithms.</p><p><strong>Availability and implementation: </strong>The source code, documentation, and sample data can be downloaded at https://github.com/icthrm/TiltRec.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}