Balancing Complexity and Clarity-Towards Clinician-Ready Antibiotic Resistance Prediction Models.

IF 5.4
Dickson Aruhomukama
{"title":"Balancing Complexity and Clarity-Towards Clinician-Ready Antibiotic Resistance Prediction Models.","authors":"Dickson Aruhomukama","doi":"10.1093/bioinformatics/btaf556","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The escalating challenge of antibiotic resistance (ABR) demands clinician-ready machine learning models that are not only accurate but interpretable.</p><p><strong>Results: </strong>By treating resistance genes as independent features and augmenting them with curated single-nucleotide polymorphisms and contextual markers, this approach delivers scalable, transparent predictions aligned with clinical decision-making needs.</p><p><strong>Availability: </strong>Not applicable.</p><p><strong>Supplementary information: </strong>Not applicable.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The escalating challenge of antibiotic resistance (ABR) demands clinician-ready machine learning models that are not only accurate but interpretable.

Results: By treating resistance genes as independent features and augmenting them with curated single-nucleotide polymorphisms and contextual markers, this approach delivers scalable, transparent predictions aligned with clinical decision-making needs.

Availability: Not applicable.

Supplementary information: Not applicable.

平衡复杂性和清晰度——走向临床就绪的抗生素耐药性预测模型。
动机:抗生素耐药性(ABR)不断升级的挑战要求临床就绪的机器学习模型不仅准确,而且可解释。结果:通过将耐药基因视为独立的特征,并利用经过筛选的单核苷酸多态性和背景标记对其进行增强,该方法提供了可扩展的、透明的预测,与临床决策需求相一致。可用性:不适用。补充信息:不适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信