acmgscaler:在ACMG/AMP框架内用于标准化基因水平变异效应评分校准的R包和Colab。

IF 5.4
Mihaly Badonyi, Joseph A Marsh
{"title":"acmgscaler:在ACMG/AMP框架内用于标准化基因水平变异效应评分校准的R包和Colab。","authors":"Mihaly Badonyi, Joseph A Marsh","doi":"10.1093/bioinformatics/btaf503","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>A genome-wide variant effect calibration method was recently developed under the guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP), following ClinGen recommendations for variant classification. While genome-wide approaches offer clinical utility, emerging evidence highlights the need for gene- and context-specific calibration to improve accuracy. Building on previous work, we have developed an algorithm tailored to converting functional scores from both multiplexed assays of variant effects (MAVEs) and computational variant effect predictors (VEPs) into ACMG/AMP evidence strengths.</p><p><strong>Results: </strong>Our method is designed to deliver consistent performance across different genes and score distributions, with all variables adaptively determined from the input data, preventing selective adjustments or overfitting that could inflate evidence strengths beyond empirical support. To facilitate adoption, we introduce acmgscaler, a lightweight R package and a plug-and-play Google Colab notebook for the calibration of custom datasets. This algorithmic framework bridges the gap between MAVEs/VEPs and clinically actionable variant classification.</p><p><strong>Availability and implementation: </strong>The R package and Colab notebook are available at https://github.com/badonyi/acmgscaler.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12496131/pdf/","citationCount":"0","resultStr":"{\"title\":\"acmgscaler: an R package and Colab for standardized gene-level variant effect score calibration within the ACMG/AMP framework.\",\"authors\":\"Mihaly Badonyi, Joseph A Marsh\",\"doi\":\"10.1093/bioinformatics/btaf503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>A genome-wide variant effect calibration method was recently developed under the guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP), following ClinGen recommendations for variant classification. While genome-wide approaches offer clinical utility, emerging evidence highlights the need for gene- and context-specific calibration to improve accuracy. Building on previous work, we have developed an algorithm tailored to converting functional scores from both multiplexed assays of variant effects (MAVEs) and computational variant effect predictors (VEPs) into ACMG/AMP evidence strengths.</p><p><strong>Results: </strong>Our method is designed to deliver consistent performance across different genes and score distributions, with all variables adaptively determined from the input data, preventing selective adjustments or overfitting that could inflate evidence strengths beyond empirical support. To facilitate adoption, we introduce acmgscaler, a lightweight R package and a plug-and-play Google Colab notebook for the calibration of custom datasets. This algorithmic framework bridges the gap between MAVEs/VEPs and clinically actionable variant classification.</p><p><strong>Availability and implementation: </strong>The R package and Colab notebook are available at https://github.com/badonyi/acmgscaler.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12496131/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:在美国医学遗传学与基因组学学院和分子病理学协会(ACMG/AMP)的指导下,根据ClinGen对变异分类的建议,最近开发了一种全基因组变异效应校准方法。虽然全基因组方法具有临床实用性,但新出现的证据强调需要针对基因和环境进行校准以提高准确性。在之前工作的基础上,我们开发了一种专门的算法,用于将变体效应(MAVEs)的多路分析和计算变体效应预测(VEPs)的功能评分转换为ACMG/AMP证据强度。结果:我们的方法旨在在不同的基因和分数分布中提供一致的性能,所有变量都自适应地从输入数据中确定,防止选择性调整或过度拟合,从而使证据强度超出经验支持。为了便于采用,我们引入了acmgscaler,一个轻量级的R包和一个即插即用的谷歌Colab笔记本,用于校准自定义数据集。该算法框架弥补了MAVEs/ vep与临床可操作的变异分类之间的差距。可用性:R包和Colab笔记本可在https://github.com/badonyi/acmgscaler.Supplementary上获得:补充数据可在Bioinformatics在线获得。校准数据集来自图3。可在https://osf.io/7hjnm/下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
acmgscaler: an R package and Colab for standardized gene-level variant effect score calibration within the ACMG/AMP framework.

Motivation: A genome-wide variant effect calibration method was recently developed under the guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP), following ClinGen recommendations for variant classification. While genome-wide approaches offer clinical utility, emerging evidence highlights the need for gene- and context-specific calibration to improve accuracy. Building on previous work, we have developed an algorithm tailored to converting functional scores from both multiplexed assays of variant effects (MAVEs) and computational variant effect predictors (VEPs) into ACMG/AMP evidence strengths.

Results: Our method is designed to deliver consistent performance across different genes and score distributions, with all variables adaptively determined from the input data, preventing selective adjustments or overfitting that could inflate evidence strengths beyond empirical support. To facilitate adoption, we introduce acmgscaler, a lightweight R package and a plug-and-play Google Colab notebook for the calibration of custom datasets. This algorithmic framework bridges the gap between MAVEs/VEPs and clinically actionable variant classification.

Availability and implementation: The R package and Colab notebook are available at https://github.com/badonyi/acmgscaler.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信