Bioinformatics (Oxford, England)最新文献

筛选
英文 中文
Improved prediction of post-translational modification crosstalk within proteins using DeepPCT. 利用 DeepPCT 改进蛋白质翻译后修饰串扰的预测。
Bioinformatics (Oxford, England) Pub Date : 2024-11-21 DOI: 10.1093/bioinformatics/btae675
Yu-Xiang Huang, Rong Liu
{"title":"Improved prediction of post-translational modification crosstalk within proteins using DeepPCT.","authors":"Yu-Xiang Huang, Rong Liu","doi":"10.1093/bioinformatics/btae675","DOIUrl":"https://doi.org/10.1093/bioinformatics/btae675","url":null,"abstract":"<p><strong>Motivation: </strong>Post-translational modification (PTM) crosstalk events play critical roles in biological processes. Several machine learning methods have been developed to identify PTM crosstalk within proteins, but the accuracy is still far from satisfactory. Recent breakthroughs in deep learning and protein structure prediction could provide a potential solution to this issue.</p><p><strong>Results: </strong>We proposed DeepPCT, a deep learning algorithm to identify PTM crosstalk using AlphaFold2-based structures. In this algorithm, one deep learning classifier was constructed for sequence-based prediction by combining the residue and residue pair embeddings with cross-attention techniques, while the other classifier was established for structure-based prediction by integrating the structural embedding and a graph neural network. Meanwhile, a machine learning classifier was developed using novel structural descriptors and a random forest model to complement the structural deep learning classifier. By integrating the three classifiers, DeepPCT outperformed existing algorithms in different evaluation scenarios and showed better generalizability on new data owing to its less distance dependency.</p><p><strong>Availability: </strong>Datasets, codes, and models of DeepPCT are freely accessible at https://github.com/hzau-liulab/DeepPCT/.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OneSC: A computational platform for recapitulating cell state transitions. OneSC:重现细胞状态转换的计算平台。
Bioinformatics (Oxford, England) Pub Date : 2024-11-21 DOI: 10.1093/bioinformatics/btae703
Da Peng, Patrick Cahan
{"title":"OneSC: A computational platform for recapitulating cell state transitions.","authors":"Da Peng, Patrick Cahan","doi":"10.1093/bioinformatics/btae703","DOIUrl":"10.1093/bioinformatics/btae703","url":null,"abstract":"<p><strong>Motivation: </strong>Computational modelling of cell state transitions has been a great interest of many in the field of developmental biology, cancer biology and cell fate engineering because it enables performing perturbation experiments in silico more rapidly and cheaply than could be achieved in a lab. Recent advancements in single-cell RNA sequencing (scRNA-seq) allow the capture of high-resolution snapshots of cell states as they transition along temporal trajectories. Using these high-throughput datasets, we can train computational models to generate in silico 'synthetic' cells that faithfully mimic the temporal trajectories.</p><p><strong>Results: </strong>Here we present OneSC, a platform that can simulate cell state transitions using systems of stochastic differential equations govern by a regulatory network of core transcription factors (TFs). Different from many current network inference methods, OneSC prioritizes on generating Boolean network that produces faithful cell state transitions and terminal cell states that mimic real biological systems. Applying OneSC to real data, we inferred a core TF network using a mouse myeloid progenitor scRNA-seq dataset and showed that the dynamical simulations of that network generate synthetic single-cell expression profiles that faithfully recapitulate the four myeloid differentiation trajectories going into differentiated cell states (erythrocytes, megakaryocytes, granulocytes and monocytes). Finally, through the in silico perturbations of the mouse myeloid progenitor core network, we showed that OneSC can accurately predict cell fate decision biases of TF perturbations that closely match with previous experimental observations.</p><p><strong>Availability: </strong>OneSC is implemented as a Python package on GitHub (https://github.com/CahanLab/oneSC) and on Zenodo (https://zenodo.org/records/14052421).</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate and Transferable Drug-Target Interaction Prediction with DrugLAMP. 利用 DrugLAMP 进行准确、可转移的药物-靶点相互作用预测。
Bioinformatics (Oxford, England) Pub Date : 2024-11-21 DOI: 10.1093/bioinformatics/btae693
Zhengchao Luo, Wei Wu, Qichen Sun, Jinzhuo Wang
{"title":"Accurate and Transferable Drug-Target Interaction Prediction with DrugLAMP.","authors":"Zhengchao Luo, Wei Wu, Qichen Sun, Jinzhuo Wang","doi":"10.1093/bioinformatics/btae693","DOIUrl":"https://doi.org/10.1093/bioinformatics/btae693","url":null,"abstract":"<p><strong>Motivation: </strong>Accurate prediction of drug-target interactions (DTIs), especially for novel targets or drugs, is crucial for accelerating drug discovery. Recent advances in pretrained language models (PLMs) and multi-modal learning present new opportunities to enhance DTI prediction by leveraging vast unlabeled molecular data and integrating complementary information from multiple modalities.</p><p><strong>Results: </strong>We introduce DrugLAMP (PLM-Assisted Multi-modal Prediction), a PLM-based multi-modal framework for accurate and transferable DTI prediction. DrugLAMP integrates molecular graph and protein sequence features extracted by PLMs and traditional feature extractors. We introduce two novel multi-modal fusion modules: (1) Pocket-guided Co-Attention (PGCA), which uses protein pocket information to guide the attention mechanism on drug features, and (2) Paired Multi-modal Attention (PMMA), which enables effective cross-modal interactions between drug and protein features. These modules work together to enhance the model's ability to capture complex drug-protein interactions. Moreover, the Contrastive Compound-Protein Pre-training (2C2P) module enhances the model's generalization to real-world scenarios by aligning features across modalities and conditions. Comprehensive experiments demonstrate DrugLAMP's state-of-the-art performance on both standard benchmarks and challenging settings simulating real-world drug discovery, where test drugs/targets are unseen during training. Visualizations of attention maps and application to predict cryptic pockets and drug side effects further showcase DrugLAMP's strong interpretability and generalizability. Ablation studies confirm the contributions of the proposed modules.</p><p><strong>Availability: </strong>Source code and datasets are freely available at https://github.com/Lzcstan/DrugLAMP. All data originate from public sources.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse Neighbor Joining: rapid phylogenetic inference using a sparse distance matrix. 稀疏邻接:使用稀疏距离矩阵快速进行系统发育推断。
Bioinformatics (Oxford, England) Pub Date : 2024-11-21 DOI: 10.1093/bioinformatics/btae701
Semih Kurt, Alexandre Bouchard-Côté, Jens Lagergren
{"title":"Sparse Neighbor Joining: rapid phylogenetic inference using a sparse distance matrix.","authors":"Semih Kurt, Alexandre Bouchard-Côté, Jens Lagergren","doi":"10.1093/bioinformatics/btae701","DOIUrl":"https://doi.org/10.1093/bioinformatics/btae701","url":null,"abstract":"<p><strong>Motivation: </strong>Phylogenetic reconstruction is a fundamental problem in computational biology. The Neighbor Joining (NJ) algorithm offers an efficient distance-based solution to this problem, which often serves as the foundation for more advanced statistical methods. Despite prior efforts to enhance the speed of NJ, the computation of the n  2 entries of the distance matrix, where n is the number of phylogenetic tree leaves, continues to pose a limitation in scaling NJ to larger datasets.</p><p><strong>Results: </strong>In this work, we propose a new algorithm which does not require computing a dense distance matrix. Instead, it dynamically determines a sparse set of at most O(n log n) distance matrix entries to be computed in its basic version, and up to O(n log 2n) entries in an enhanced version. We show by experiments that this approach reduces the execution time of NJ for large datasets, with a trade-off in accuracy.</p><p><strong>Availability and implementation: </strong>Sparse Neighbor Joining is implemented in Python and freely available at https://github.com/kurtsemih/SNJ.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene count estimation with pytximport enables reproducible analysis of bulk RNA sequencing data in Python. 利用 pytximport 估算基因数量,可在 Python 中对大量 RNA 测序数据进行可重现的分析。
Bioinformatics (Oxford, England) Pub Date : 2024-11-20 DOI: 10.1093/bioinformatics/btae700
Malte Kuehl, Milagros N Wong, Nicola Wanner, Stefan Bonn, Victor G Puelles
{"title":"Gene count estimation with pytximport enables reproducible analysis of bulk RNA sequencing data in Python.","authors":"Malte Kuehl, Milagros N Wong, Nicola Wanner, Stefan Bonn, Victor G Puelles","doi":"10.1093/bioinformatics/btae700","DOIUrl":"https://doi.org/10.1093/bioinformatics/btae700","url":null,"abstract":"<p><strong>Summary: </strong>Transcript quantification tools efficiently map bulk RNA sequencing reads to reference transcriptomes. However, their output consists of transcript count estimates that are subject to multiple biases and cannot be readily used with existing differential gene expression analysis tools in Python.Here we present pytximport, a Python implementation of the tximport R package that supports a variety of input formats, different modes of bias correction, inferential replicates, gene-level summarization of transcript counts, transcript-level exports, transcript-to-gene mapping generation and optional filtering of transcripts by biotype. pytximport is part of the scverse ecosystem of open-source Python software packages for omics analyses and includes both a Python as well as a command-line interface.With pytximport, we propose a bulk RNA sequencing analysis workflow based on Bioconda and scverse ecosystem packages, ensuring reproducible analyses through Snakemake rules. We apply this pipeline to a publicly available RNA-sequencing dataset, demonstrating how pytximport enables the creation of Python-centric workflows capable of providing insights into transcriptomic alterations.</p><p><strong>Availability: </strong>pytximport is licensed under the GNU General Public License version 3. The source code is available at https://github.com/complextissue/pytximport and via Zenodo with DOI: 10.5281/zenodo.13907917. A related Snakemake workflow is available through GitHub at https://github.com/complextissue/snakemake-bulk-rna-seq-workflow and Zenodo with DOI: 10.5281/zenodo.12713811. Documentation and a vignette for new users are available at: https://pytximport.readthedocs.io.</p><p><strong>Supplementary information: </strong>Supplementary Material is available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MMOSurv: Meta-learning for few-shot survival analysis with multi-omics data. MMOSurv:利用多组学数据的元学习(Meta-learning for few-shot survival analysis with multi-omics data)。
Bioinformatics (Oxford, England) Pub Date : 2024-11-19 DOI: 10.1093/bioinformatics/btae684
Gang Wen, Limin Li
{"title":"MMOSurv: Meta-learning for few-shot survival analysis with multi-omics data.","authors":"Gang Wen, Limin Li","doi":"10.1093/bioinformatics/btae684","DOIUrl":"https://doi.org/10.1093/bioinformatics/btae684","url":null,"abstract":"<p><strong>Motivation: </strong>High-throughput techniques have produced a large amount of high-dimensional multi-omics data, which makes it promising to predict patient survival outcomes more accurately. Recent work has showed the superiority of multi-omics data in survival analysis. However, it remains challenging to integrate multi-omics data to solve few-shot survival prediction problem, with only a few available training samples, especially for rare cancers.</p><p><strong>Results: </strong>In this work, we propose a meta-learning framework for multi-omics few-shot survival analysis, namely MMOSurv, which enables to learn an effective multi-omics survival prediction model from a very few training samples of a specific cancer type, with the meta-knowledge across tasks from relevant cancer types. By assuming a deep Cox survival model with multiple omics, MMOSurv first learns an adaptable parameter initialization for the multi-omics survival model from abundant data of relevant cancers, and then adapts the parameters quickly and efficiently for the target cancer task with a very few training samples. Our experiments on eleven cancer types in TCGA datasets show that, compared to single-omics meta-learning methods, MMOSurv can better utilize the meta-information of similarities and relationships between different omics data from relevant cancer datasets to improve survival prediction of the target cancer with a very few multi-omics training samples. Furthermore, MMOSurv achieves better prediction performance than other state-of-the-art strategies such as multi-task learning and pre-training.</p><p><strong>Availability and implementation: </strong>MMOSurv is freely available at https://github.com/LiminLi-xjtu/MMOSurv.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DrugRepPT: a deep pre-training and fine-tuning framework for drug repositioning based on drug's expression perturbation and treatment effectiveness. DrugRepPT:基于药物表达扰动和治疗效果的药物重新定位深度预训练和微调框架。
Bioinformatics (Oxford, England) Pub Date : 2024-11-19 DOI: 10.1093/bioinformatics/btae692
Shuyue Fan, Kuo Yang, Kezhi Lu, Xin Dong, Xianan Li, Qiang Zhu, Shao Li, Jianyang Zeng, Xuezhong Zhou
{"title":"DrugRepPT: a deep pre-training and fine-tuning framework for drug repositioning based on drug's expression perturbation and treatment effectiveness.","authors":"Shuyue Fan, Kuo Yang, Kezhi Lu, Xin Dong, Xianan Li, Qiang Zhu, Shao Li, Jianyang Zeng, Xuezhong Zhou","doi":"10.1093/bioinformatics/btae692","DOIUrl":"https://doi.org/10.1093/bioinformatics/btae692","url":null,"abstract":"<p><strong>Motivation: </strong>Drug repositioning, identifying novel indications for approved drugs, is a cost-effective strategy in drug discovery. Despite numerous proposed drug repositioning models, integrating network-based features, differential gene expression, and chemical structures for high-performance drug repositioning remains challenging.</p><p><strong>Results: </strong>We propose a comprehensive deep pre-training and fine-tuning framework for drug repositioning, termed DrugRepPT. Initially, we design a graph pre-training module employing model-augmented contrastive learning on a vast drug-disease heterogeneous graph to capture nuanced interactions and expression perturbations after intervention. Subsequently, we introduce a fine-tuning module leveraging a graph residual-like convolution network to elucidate intricate interactions between diseases and drugs. Moreover, a Bayesian multi-loss approach is introduced to balance the existence and effectiveness of drug treatment effectively. Extensive experiments showcase the efficacy of our framework, with DrugRepPT exhibiting remarkable performance improvements compared to SOTA baseline methods (Improvement 106.13% on Hit@1 and 54.45% on mean reciprocal rank). The reliability of predicted results is further validated through two case studies, ie, gastritis and fatty liver, via literature validation, network medicine analysis, and docking screening.</p><p><strong>Availability and implementation: </strong>The code and results are available at https://github.com/2020MEAI/DrugRepPT.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PhosX: data-driven kinase activity inference from phosphoproteomics experiments. PhosX:从磷酸蛋白组学实验中推断数据驱动的激酶活性。
Bioinformatics (Oxford, England) Pub Date : 2024-11-19 DOI: 10.1093/bioinformatics/btae697
Alessandro Lussana, Sophia Müller-Dott, Julio Saez-Rodriguez, Evangelia Petsalaki
{"title":"PhosX: data-driven kinase activity inference from phosphoproteomics experiments.","authors":"Alessandro Lussana, Sophia Müller-Dott, Julio Saez-Rodriguez, Evangelia Petsalaki","doi":"10.1093/bioinformatics/btae697","DOIUrl":"https://doi.org/10.1093/bioinformatics/btae697","url":null,"abstract":"<p><strong>Summary: </strong>The inference of kinase activity from phosphoproteomics data can point to causal mechanisms driving signalling processes and potential drug targets. Identifying the kinases whose change in activity explains the observed phosphorylation profiles, however, remains challenging, and constrained by the manually curated knowledge of kinase-substrate associations. Recently, experimentally determined substrate sequence specificities of human kinases have become available, but robust methods to exploit this new data for kinase activity inference are still missing. We present PhosX, a method to estimate differential kinase activity from phosphoproteomics data that combines state-of-the art statistics in enrichment analysis with kinases' substrate sequence specificity information. Using a large phosphoproteomics dataset with known differentially regulated kinases we show that our method identifies upregulated and downregulated kinases by only relying on the input phosphopeptides' sequences and intensity changes. We find that PhosX outperforms the currently available approach for the same task, and performs better or similarly to state-of-the-art methods that rely on previously known kinase-substrate associations. We therefore recommend its use for data-driven kinase activity inference.</p><p><strong>Availability and implementation: </strong>PhosX is implemented in Python, open-source under the Apache-2.0 licence, and distributed on the Python Package Index. The code is available on GitHub (https://github.com/alussana/phosx).</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mutual information for detecting multi-class biomarkers when integrating multiple bulk or single-cell transcriptomic studies. 在整合多个批量或单细胞转录组研究时检测多类生物标记物的互信息。
Bioinformatics (Oxford, England) Pub Date : 2024-11-19 DOI: 10.1093/bioinformatics/btae696
Jian Zou, Zheqi Li, Neil Carleton, Steffi Oesterreich, Adrian V Lee, George C Tseng
{"title":"Mutual information for detecting multi-class biomarkers when integrating multiple bulk or single-cell transcriptomic studies.","authors":"Jian Zou, Zheqi Li, Neil Carleton, Steffi Oesterreich, Adrian V Lee, George C Tseng","doi":"10.1093/bioinformatics/btae696","DOIUrl":"10.1093/bioinformatics/btae696","url":null,"abstract":"<p><strong>Motivation: </strong>Biomarker detection plays a pivotal role in biomedical research. Integrating omics studies from multiple cohorts can enhance statistical power, accuracy and robustness of the detection results. However, existing methods for horizontally combining omics studies are mostly designed for two-class scenarios (e.g., cases versus controls) and are not directly applicable for studies with multi-class design (e.g., samples from multiple disease subtypes, treatments, tissues, or cell types).</p><p><strong>Results: </strong>We propose a statistical framework, namely Mutual Information Concordance Analysis (MICA), to detect biomarkers with concordant multi-class expression pattern across multiple omics studies from an information theoretic perspective. Our approach first detects biomarkers with concordant multi-class patterns across partial or all of the omics studies using a global test by mutual information. A post hoc analysis is then performed for each detected biomarkers and identify studies with concordant pattern. Extensive simulations demonstrate improved accuracy and successful false discovery rate control of MICA compared to an existing MCC method. The method is then applied to two practical scenarios: four tissues of mouse metabolism-related transcriptomic studies, and three sources of estrogen treatment expression profiles. Detected biomarkers by MICA show intriguing biological insights and functional annotations. Additionally, we implemented MICA for single-cell RNA-Seq data for tumor progression biomarkers, highlighting critical roles of ribosomal function in the tumor microenvironment of triple-negative breast cancer and underscoring the potential of MICA for detecting novel therapeutic targets.</p><p><strong>Availability: </strong>The source code is available on Figshare at https://doi.org/10.6084/m9.figshare.27635436. Additionally, the R package can be installed directly from GitHub at https://github.com/jianzou75/MICA.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro-DeMix: a mixture beta-multinomial model for investigating the heterogeneity of the stool microbiome compositions. Micro-DeMix:用于研究粪便微生物组组成异质性的β-多项式混合模型。
Bioinformatics (Oxford, England) Pub Date : 2024-11-19 DOI: 10.1093/bioinformatics/btae667
Ruoqian Liu, Yue Wang, Dan Cheng
{"title":"Micro-DeMix: a mixture beta-multinomial model for investigating the heterogeneity of the stool microbiome compositions.","authors":"Ruoqian Liu, Yue Wang, Dan Cheng","doi":"10.1093/bioinformatics/btae667","DOIUrl":"10.1093/bioinformatics/btae667","url":null,"abstract":"<p><strong>Motivation: </strong>Extensive research has uncovered the critical role of the human gut microbiome in various aspects of health, including metabolism, nutrition, physiology, and immune function. Fecal microbiota is often used as a proxy for understanding the gut microbiome, but it represents an aggregate view, overlooking spatial variations across different gastrointestinal (GI) locations. Emerging studies with spatial microbiome data collected from specific GI regions offer a unique opportunity to better understand the spatial composition of the stool microbiome.</p><p><strong>Results: </strong>We introduce Micro-DeMix, a mixture beta-multinomial model that deconvolutes the fecal microbiome at the compositional level by integrating stool samples with spatial microbiome data. Micro-DeMix facilitates the comparison of microbial compositions across different GI regions within the stool microbiome through a hypothesis-testing framework. We demonstrate the effectiveness and efficiency of Micro-DeMix using multiple simulated data sets and the Inflammatory Bowel Disease (IBD) data from the NIH Integrative Human Microbiome Project.</p><p><strong>Availability and implementation: </strong>The R package is available at https://github.com/liuruoqian/MicroDemix.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信