WinPCA: a package for windowed principal component analysis.

IF 5.4
L Moritz Blumer, Jeffrey M Good, Richard Durbin
{"title":"WinPCA: a package for windowed principal component analysis.","authors":"L Moritz Blumer, Jeffrey M Good, Richard Durbin","doi":"10.1093/bioinformatics/btaf529","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>With chromosomal reference genomes and population-scale whole genome-sequencing becoming increasingly accessible, contemporary studies often include characterizations of the genomic landscape as it varies along chromosomes, commonly termed genome scans. While traditional summary statistics like FST and dXY between pre-assigned populations remain integral to characterizing the genomic divergence profile, PCA differs by providing single-sample resolution, thereby supporting the identification of polymorphic inversions, introgression and other types of divergent sequence that may not be fully aligned with global population structure. Here, we introduce WinPCA, a user-friendly package to compute, polarize and visualize genetic principal components in windows along the genome. To accommodate low-coverage whole genome-sequencing datasets, WinPCA can optionally make use of PCAngsd methods to compute principal components in a genotype likelihood framework. WinPCA accepts variant data in either VCF or BEAGLE format and can generate rich plots for interactive data exploration and downstream presentation.</p><p><strong>Availability and implementation: </strong>WinPCA is implemented in Python and freely available at https://github.com/MoritzBlumer/winpca and https://doi.org/10.5281/zenodo.15614979.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: With chromosomal reference genomes and population-scale whole genome-sequencing becoming increasingly accessible, contemporary studies often include characterizations of the genomic landscape as it varies along chromosomes, commonly termed genome scans. While traditional summary statistics like FST and dXY between pre-assigned populations remain integral to characterizing the genomic divergence profile, PCA differs by providing single-sample resolution, thereby supporting the identification of polymorphic inversions, introgression and other types of divergent sequence that may not be fully aligned with global population structure. Here, we introduce WinPCA, a user-friendly package to compute, polarize and visualize genetic principal components in windows along the genome. To accommodate low-coverage whole genome-sequencing datasets, WinPCA can optionally make use of PCAngsd methods to compute principal components in a genotype likelihood framework. WinPCA accepts variant data in either VCF or BEAGLE format and can generate rich plots for interactive data exploration and downstream presentation.

Availability and implementation: WinPCA is implemented in Python and freely available at https://github.com/MoritzBlumer/winpca and https://doi.org/10.5281/zenodo.15614979.

WinPCA:一个用于窗口主成分分析的包。
摘要:随着染色体参考基因组和群体规模的全基因组测序越来越容易获得,当代研究通常包括基因组景观的特征,因为它沿着染色体变化,通常称为基因组扫描。虽然传统的汇总统计,如预先分配种群之间的fst和d XY,仍然是表征基因组差异概况的重要组成部分,但PCA的不同之处在于提供单样本分辨率,从而支持多态性反转、渗入和其他类型的差异序列的识别,这些序列可能与全球种群结构不完全一致。在这里,我们介绍WinPCA,一个用户友好的软件包,用于计算,极化和可视化沿基因组窗口的遗传主成分。为了适应低覆盖率的全基因组测序数据集,WinPCA可以选择性地使用PCAngsd方法来计算基因型似然框架中的主成分。WinPCA接受VCF或BEAGLE格式的变量数据,并可以生成丰富的图形,用于交互式数据探索和下游表示。可用性和实现:WinPCA是用Python实现的,可以在https://github.com/MoritzBlumer/winpca和https://doi.org/10.5281/zenodo.15614979免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信