{"title":"WinPCA:一个用于窗口主成分分析的包。","authors":"L Moritz Blumer, Jeffrey M Good, Richard Durbin","doi":"10.1093/bioinformatics/btaf529","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>With chromosomal reference genomes and population-scale whole genome-sequencing becoming increasingly accessible, contemporary studies often include characterizations of the genomic landscape as it varies along chromosomes, commonly termed genome scans. While traditional summary statistics like FST and dXY between pre-assigned populations remain integral to characterizing the genomic divergence profile, PCA differs by providing single-sample resolution, thereby supporting the identification of polymorphic inversions, introgression and other types of divergent sequence that may not be fully aligned with global population structure. Here, we introduce WinPCA, a user-friendly package to compute, polarize and visualize genetic principal components in windows along the genome. To accommodate low-coverage whole genome-sequencing datasets, WinPCA can optionally make use of PCAngsd methods to compute principal components in a genotype likelihood framework. WinPCA accepts variant data in either VCF or BEAGLE format and can generate rich plots for interactive data exploration and downstream presentation.</p><p><strong>Availability and implementation: </strong>WinPCA is implemented in Python and freely available at https://github.com/MoritzBlumer/winpca and https://doi.org/10.5281/zenodo.15614979.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WinPCA: a package for windowed principal component analysis.\",\"authors\":\"L Moritz Blumer, Jeffrey M Good, Richard Durbin\",\"doi\":\"10.1093/bioinformatics/btaf529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>With chromosomal reference genomes and population-scale whole genome-sequencing becoming increasingly accessible, contemporary studies often include characterizations of the genomic landscape as it varies along chromosomes, commonly termed genome scans. While traditional summary statistics like FST and dXY between pre-assigned populations remain integral to characterizing the genomic divergence profile, PCA differs by providing single-sample resolution, thereby supporting the identification of polymorphic inversions, introgression and other types of divergent sequence that may not be fully aligned with global population structure. Here, we introduce WinPCA, a user-friendly package to compute, polarize and visualize genetic principal components in windows along the genome. To accommodate low-coverage whole genome-sequencing datasets, WinPCA can optionally make use of PCAngsd methods to compute principal components in a genotype likelihood framework. WinPCA accepts variant data in either VCF or BEAGLE format and can generate rich plots for interactive data exploration and downstream presentation.</p><p><strong>Availability and implementation: </strong>WinPCA is implemented in Python and freely available at https://github.com/MoritzBlumer/winpca and https://doi.org/10.5281/zenodo.15614979.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
WinPCA: a package for windowed principal component analysis.
Summary: With chromosomal reference genomes and population-scale whole genome-sequencing becoming increasingly accessible, contemporary studies often include characterizations of the genomic landscape as it varies along chromosomes, commonly termed genome scans. While traditional summary statistics like FST and dXY between pre-assigned populations remain integral to characterizing the genomic divergence profile, PCA differs by providing single-sample resolution, thereby supporting the identification of polymorphic inversions, introgression and other types of divergent sequence that may not be fully aligned with global population structure. Here, we introduce WinPCA, a user-friendly package to compute, polarize and visualize genetic principal components in windows along the genome. To accommodate low-coverage whole genome-sequencing datasets, WinPCA can optionally make use of PCAngsd methods to compute principal components in a genotype likelihood framework. WinPCA accepts variant data in either VCF or BEAGLE format and can generate rich plots for interactive data exploration and downstream presentation.
Availability and implementation: WinPCA is implemented in Python and freely available at https://github.com/MoritzBlumer/winpca and https://doi.org/10.5281/zenodo.15614979.