{"title":"平衡复杂性和清晰度——走向临床就绪的抗生素耐药性预测模型。","authors":"Dickson Aruhomukama","doi":"10.1093/bioinformatics/btaf556","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The escalating challenge of antibiotic resistance (ABR) demands clinician-ready machine learning models that are not only accurate but interpretable.</p><p><strong>Results: </strong>By treating resistance genes as independent features and augmenting them with curated single-nucleotide polymorphisms and contextual markers, this approach delivers scalable, transparent predictions aligned with clinical decision-making needs.</p><p><strong>Availability: </strong>Not applicable.</p><p><strong>Supplementary information: </strong>Not applicable.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing Complexity and Clarity-Towards Clinician-Ready Antibiotic Resistance Prediction Models.\",\"authors\":\"Dickson Aruhomukama\",\"doi\":\"10.1093/bioinformatics/btaf556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>The escalating challenge of antibiotic resistance (ABR) demands clinician-ready machine learning models that are not only accurate but interpretable.</p><p><strong>Results: </strong>By treating resistance genes as independent features and augmenting them with curated single-nucleotide polymorphisms and contextual markers, this approach delivers scalable, transparent predictions aligned with clinical decision-making needs.</p><p><strong>Availability: </strong>Not applicable.</p><p><strong>Supplementary information: </strong>Not applicable.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Balancing Complexity and Clarity-Towards Clinician-Ready Antibiotic Resistance Prediction Models.
Motivation: The escalating challenge of antibiotic resistance (ABR) demands clinician-ready machine learning models that are not only accurate but interpretable.
Results: By treating resistance genes as independent features and augmenting them with curated single-nucleotide polymorphisms and contextual markers, this approach delivers scalable, transparent predictions aligned with clinical decision-making needs.