{"title":"Heat generation effects on Magnetohydrodynamic Powell-Eyring fluid flow along a vertical surface with a Chemical reaction","authors":"D. Iranian, S. Karthik, A. Seethalakshmy","doi":"10.1016/j.finmec.2023.100212","DOIUrl":"10.1016/j.finmec.2023.100212","url":null,"abstract":"<div><p>This work examines the influence of double diffusion on MHD Powell-Eyring fluid flow with free convection through a vertical surface. In addition, the impacts of chemical reaction, heat generation, local magnetic field, Grashof number and local modified Grashof number parameters are considered. The analysis of double diffusive in the occurrence of fluid flow under the convective surface conditions is studied. To translate the governing PDEs of velocity, energy and species (solutal) concentration equation, a couple of nonlinear ODEs we relate the suitable transformation of similarity. The set of nonlinear ODE's numerically and attained numerical consequences are connected by those gained through the assistance of MATLAB procedure bvp4c. The impact of prominent constraints of chemical reaction, Prandtl number, Schmidt number, heat source parameter, magneto hydrodynamic parameter, on dimension less velocity, energy and solutal (species) concentration dissemination has been considered. Impacts of different parameters such as skin friction coefficient, Nusselt number and Sherwood number are described through tables.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48662892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A fourth-order degradation tensor for an anisotropic damage phase-field model","authors":"A.L.E.R. Petrini , C.L.C.S. Esteves , J.L. Boldrini , M.L. Bittencourt","doi":"10.1016/j.finmec.2023.100224","DOIUrl":"10.1016/j.finmec.2023.100224","url":null,"abstract":"<div><p>This work proposes a thermodynamically consistent phase-field model for anisotropic brittle material under the hypotheses of plane stress, small deformation and constant temperature. The model is derived from the principle of virtual power, the first and second laws of thermodynamics in the form of the Clausius-Duhem inequality. The degradation effect on the material behavior is given by a fourth-order degradation tensor introduced as an internal variable that evolves according to the current strain state rather than the conventional scalar degradation function of phase-field models. Therefore, local anisotropy can be induced, changing the material mechanical behavior differently in all directions organically. The proposed degradation tensor is defined in the global coordinate system and therefore is sensitive to any change in the principal directions of the strain and stress states. To demonstrate the model’s capability of representing damage in isotropic and transversely isotropic materials, some benchmark examples were carried out and the evolution of the damage components was analyzed.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47326773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of chemically reactive squeezing flow of silica and titania hybrid nanoparticles in water-based medium between two parallel plates with higher order slip","authors":"O.A. Famakinwa, O.K. Koriko, K.S. Adegbie","doi":"10.1016/j.finmec.2023.100220","DOIUrl":"10.1016/j.finmec.2023.100220","url":null,"abstract":"<div><p>Considering the significance of hybrid nanofluid over convectional fluid in terms of high rate of heat transfer, nanoscience and nanotechnology has been enhanced by dispersing nanoparticles in the base fluid to obtain new material with series of properties and applications. In this study, the analysis of chemically reactive squeezing flow conveying silica and titanium dioxide nanoparticles in water-based medium across two parallel plates with higher order velocity slip is carried out employing three different chemical kinetics for exothermic/endothermic reactions. The system of partial differential equations resulting from the fluid model assumed the ordinary differential form in alliance with appropriate similarity variables. The modified ordinary differential equations is simulated numerically in MATLAB software package using fourth order Runge–Kutta integration scheme in line with shooting techniques. The tested validity for limited case conform to preceding reports in the literature. The outcomes from the scrutiny uncovered in tables and graphs revealed that the velocity and temperature distributions of the hybrid nanofluid decrease steadily as first order slip factor varies from 0.2 to 1.0 but increase with second order slip factor at all levels of chemical kinetics. Moreover, for exothermic reaction, the rate of heat transfer decreases at the lower plate by <span><math><mrow><mo>−</mo><mn>221.923</mn><mo>%</mo></mrow></math></span> with increasing value of activation energy parameter when <span><math><mrow><mi>m</mi><mo>=</mo><mo>−</mo><mn>2</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0.5</mn></mrow></math></span> but converse is the case in endothermic reaction as the rate of heat transfer increases by <span><math><mrow><mn>106.382</mn><mo>%</mo></mrow></math></span>.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43436327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atteshamuddin S. Sayyad , Lazreg Hadji , Abdelouahed Tounsi
{"title":"On the mechanics of FG nanobeams: A review with numerical analysis","authors":"Atteshamuddin S. Sayyad , Lazreg Hadji , Abdelouahed Tounsi","doi":"10.1016/j.finmec.2023.100219","DOIUrl":"10.1016/j.finmec.2023.100219","url":null,"abstract":"<div><p>Since the classical continuum theories are insufficient to account the small size effects of nanobeams, the nonlocal continuum theories such as Eringen's nonlocal elasticity theory, couple stress theory, strain gradient theory and surface elasticity theory have been proposed by researchers to predict the accurate structural response of isotropic and functionally graded composite nanobeams. This review focuses on research work concerned with analysis of size dependent nanoscale isotropic and functionally graded beams using classical and refined beam theories based on Eringen's nonlocal elasticity theory. The present review article also highlight the possible scope for the future research on nanobeams. In the present study, the authors have developed a new hyperbolic shear deformation theory for the analysis of isotropic and functionally graded nanobeams. The theory satisfy the traction free boundary conditions at the top and the bottom surfaces of the nanobeams. Analytical solutions for the bending, buckling and free vibration analysis of simply-supported nanobeams are obtained using the Navier method. To ensure that the present theory is accurate and valid, the results are compared to previous research.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45411739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolving geometries, topologies, and apertures in fracture networks: Quantitative insights from lattice modeling","authors":"Bakul Mathur, Rahul Prabhakaran, Daniel Koehn","doi":"10.1016/j.finmec.2023.100197","DOIUrl":"10.1016/j.finmec.2023.100197","url":null,"abstract":"<div><p>Fracture networks are crucial in controlling rock mass permeability. Some of the important features of the fracture networks like the density, interconnectivity, spatial distribution, and fracture apertures determine the success of the subsurface operations. Fracture networks can be studied with analogue studies, physical experiments, and numerical modeling. In this study, we analyse the evolution of a two-dimensional fracture network under gravitational and shear loads using the lattice modeling capabilities of the microstructural modeling environment “Elle”. The simulation cases include varying gravitational loads and Young’s moduli of the formations. The topological progression of the modeled fracture network from isolated to interconnected nodes depicts a realistic network evolution process. The study shows that the rock stiffness exhibits a direct correlation with the number of fractures influencing the average aperture size of the network. A higher gravity load resulted in the development of a sparse fracture network. Stiffer rock models also showed an early onset of fracturing.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45056537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sukhminder Singh , Lukas Pflug , Julia Mergheim , Michael Stingl
{"title":"On optimization of heterogeneous materials for enhanced resistance to bulk fracture","authors":"Sukhminder Singh , Lukas Pflug , Julia Mergheim , Michael Stingl","doi":"10.1016/j.finmec.2023.100200","DOIUrl":"10.1016/j.finmec.2023.100200","url":null,"abstract":"<div><p>We propose a novel approach to optimize the design of heterogeneous materials, with the goal of enhancing their effective fracture toughness under mode-I loading. The method employs a Gaussian processes-based Bayesian optimization framework to determine the optimal shapes and locations of stiff elliptical inclusions within a periodic microstructure in two dimensions. To model crack propagation, the phase-field fracture method with an efficient interior-point monolithic solver and adaptive mesh refinement, is used. To account for the high sensitivity of fracture properties to initial crack location with respect to heterogeneities, we consider multiple cases of initial crack and optimize the material for the worst-case scenario. We also impose a minimum clearance constraint between the inclusions to ensure design feasibility. Numerical experiments demonstrate that the method significantly improves the fracture toughness of the material compared to the homogeneous case.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42239057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of static and dynamic responses considering thickness stretching effect for layered composite and sandwich arches using exponential shear and normal deformation theory","authors":"Valmik M. Mahajan , Amit Sharma","doi":"10.1016/j.finmec.2023.100204","DOIUrl":"10.1016/j.finmec.2023.100204","url":null,"abstract":"<div><p>Present theory investigates the dimensionless vibration frequencies, deformations, and stresses for multilayered and sandwich arches using exponential shear and normal deformation theory (ESNDT). Present studies consider the effect of <span><math><mrow><mo>[</mo><mrow><mn>1</mn><mo>+</mo><mo>(</mo><mrow><mi>z</mi><mo>/</mo><mi>R</mi></mrow><mo>)</mo></mrow><mo>]</mo></mrow></math></span>radius of curvature while selecting the displacement field of arches under the action of uniform load. It includes the effects of transverse shear <span><math><mrow><mo>(</mo><mrow><msub><mi>γ</mi><mrow><mi>x</mi><mi>z</mi></mrow></msub><mo>≠</mo><mn>0</mn></mrow><mo>)</mo></mrow></math></span> and transverse normal deformation<span><math><mrow><mo>(</mo><mrow><msub><mrow><mi>ε</mi></mrow><mi>z</mi></msub><mspace></mspace><mo>≠</mo><mspace></mspace><mn>0</mn></mrow><mo>)</mo></mrow></math></span> <em>i.e.,</em> effect of thickness stretching. The governing relations are obtained using the Navier's method, and Hamilton's virtual work principle. The proposed layered arches are completely free from shear correction, and its top and bottom surfaces is satisfies zero traction free end conditions. Present study obtained very accurate natural frequencies for layered sandwich arches than other theories because, available literature not considered the thickness stretching effect <em>i.e.,</em><span><math><mrow><mo>(</mo><mrow><msub><mrow><mi>ε</mi></mrow><mi>z</mi></msub><mspace></mspace><mo>=</mo><mn>0</mn></mrow><mo>)</mo></mrow></math></span>. Hence, the present scientific investigation accounts the effect of thickness stretching <em>i.e.,</em><span><math><mrow><mo>(</mo><mrow><msub><mrow><mi>ε</mi></mrow><mi>z</mi></msub><mspace></mspace><mo>≠</mo><mspace></mspace><mn>0</mn></mrow><mo>)</mo></mrow></math></span>. However, the non-availability of exact elasticity results of bending and dynamic responses for layered sandwich arches. Present theory is obtained vibration frequencies, displacements, and stresses of layered composite and sandwich arches; the results are compared and validates through prior published literature.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41668572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influences of Stefan blowing on unsteady flow of Casson nanofluid past a stretching surface","authors":"Saheb Konai, Hiranmoy Maiti, Swati Mukhopadhyay","doi":"10.1016/j.finmec.2023.100227","DOIUrl":"10.1016/j.finmec.2023.100227","url":null,"abstract":"<div><p>This paper deals with the flow of non-Newtonian nanoliquid past an unsteady stretched exterior in attendance of Stefan blowing/suction. Model for Casson liquid has been taken into account to represent the non-Newtonian liquid. Two phase fluid replica for nanofluid has been considered. Similarity alterations are applied to transform the leading pdes (partial differential equations) to ordinary ones. Runge–Kutta method of order four has been used to solve the altered equations numerically with the help of shooting technique. Wall shear stress, heat and mass transfer coefficients diminish with the rise in unsteadiness. Fluid's velocity and temperature are found to rise with the enhancement in Stefan blowing/suction parameter. Temperature of the fluid rises but fluid's velocity diminishes for the rising values of Casson parameter. Basically, the pertinent parameters affect the stream, warmth and accumulation transport significantly which can be viewed by the figures and tables presented here and also by their physical analysis.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44589370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-local effect of eccentrically simply supported beam on free vibration","authors":"Bojin Li , Diyun Wen , Xin-Chun Shang , Rui Zhang","doi":"10.1016/j.finmec.2023.100218","DOIUrl":"10.1016/j.finmec.2023.100218","url":null,"abstract":"<div><p>Based on the Euler-Bernoulli beam theory, the coupling effect between bending vibration mode shape and longitudinal vibration mode shape of the beam is analyzed when the beam is supported by eccentric simply supported. Under the assumption of small deformation, the vibration control equations and the coupling boundary conditions are obtained through Hamilton's principle and the principle of virtual work variation. The numerical results under three different boundary conditions are given. It shows that the natural frequencies of the beam vary with the eccentricity distances are in complete agreement with the results obtained from finite element analysis and literature. The results strongly proved the validity and correctness of the coupling method in this paper. It also indicates that eccentric simply supported constraints have non-local effects.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42963577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Akhsin Muflikhun , Mayradaffa Adyudya , Nur Fatah Rahman , Jayan Sentanuhady , Swathi Naidu Vakamulla Raghu
{"title":"Comprehensive analysis and economic study of railway brake failure from metal-based and composites-based materials","authors":"Muhammad Akhsin Muflikhun , Mayradaffa Adyudya , Nur Fatah Rahman , Jayan Sentanuhady , Swathi Naidu Vakamulla Raghu","doi":"10.1016/j.finmec.2023.100223","DOIUrl":"10.1016/j.finmec.2023.100223","url":null,"abstract":"<div><p>The brake system is one of the most critical components in transportation, especially for massive machines such as trains. Brake components decelerate the train by using friction force between the train wheels and the brake block. The efficacy of a brake system strongly depends on the quality of the material components, especially the brake blocks. This study investigated the failure brake block on three different model of brake blocks used in Indonesia (grey cast iron, composite, and magnetic composite). Several characteristics and evaluations are used, i.e., non-destructive surface analysis, microhardness, Energy Dispersive X-Ray (EDX) analysis, and computational Finite Element Method (FEM). The microscopic analysis showed severe conditions at the non-magnetic brake, followed by the magnetic brake. The roughness test indicates that the Ra value for the magnetic brake is higher than the non-magnetic composite brake, with 4.59 and 4.08, respectively. The micro hardness test revealed that in metal-based materials indentation, the results showed magnetic composite has the highest value followed by cast iron and non-magnetic composite with 306, 283, and 218, respectively. In EDX examination, magnetic brakes have filler materials such as Calcium Carbonate and Wollastonite that create better performance. The study showed that the magnetic composite brake blocks demonstrate adequate resistance to failure due to the composite's filler material, which acts as a reinforcing agent.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41848951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}